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PRESENT PLATE CONFIGURATION AND
CHAPTER OVERVIEW

In the present configuration of tectonic plates, the northeast
Pacific region is dominated by the huge Pacific Plate. Along its
eastern edge, the Pacific Plate presently interacts with two
medium-sized oceanic plates, the Juan de Fuca and Cocos Plates,
and a few related small platelets: the Yakutat, Explorer, South
Gorda, and Rivera Plates (Fig. 1). All of these occupy relatively
small regions along the edge of the Pacific Plate, interacting as
well with the North American Plate along its western rim.

The most complex modern plate boundaries in the northeast
Pacific region occur where the eastern edge of the Pacific Plate
abuts directly against North America. These are primarily strike-
slip boundaries with subordinate amounts of extension: the
Queen Charlotte-Fairweather fault system, including the oblique
motion of the Yakutat block, and the San. Andreas fault system,
including the oblique extension in the Gulf of California. The
diffuse nature of the earthquake zones around these features,
depicted in Figure 1, shows that plate boundaries within the
continental lithosphere are not as narrow and simple as those
within the oceanic plates. The broad zones of activity in the Great
Basin show the existence of at least two diffuse inland zones of
deformation, as well.

The present plate tectonic situation of the north Pacific is
quite unusual in the world ocean system in that this vast expanse
of ocean is so dominated by the one plate and contains so few
spreading centers. The evidence embedded within the Pacific
plate shows that this present odd configuration is a rather recent
development. In the early Cenozoic and earlier times the north
Pacific basin was rich in plates and spreading systems. Large
oceanic plates lay to the north, east, and south of the Pacific Plate.
In this chapter we review what is known about these ancient
plates and their slow evolution to the present configuration. First
we shall examine the magnetic anomaly isochron pattern in the
northeast Pacific and its implications for the history of sea-floor
spreading among the plates within the ocean basin. Next we
examine global-scale data used for plate tectonic reconstructions
and review the reconstructions that have been made in order to

examine the interactions between the oceanic plates and their
continental neighbors. Finally, we shall examine a few of the
phenomena in the continental geologic record of the western
United States that resulted from these plate interactions and that
help us refine our understanding of them.

SEA-FLOOR SPREADING HISTORY
OF THE NORTH PACIFIC

Magnetic anomaly data base and polarity reversal timescale

The primary data bases used in most plate tectonic recon-
structions are maps of magnetic anomaly isochrons and topog-
raphy of the ocean floor. In Plates 3A, 3B, and 3C we present
new compilations of fracture zones and selected magnetic anom-
aly profiles and contours in the north Pacific, along with isochron
interpretations. Printed in reverse on the backs of the plates, for
use with a light table, are the bathymetric contours from Mam-
merickx (this volume). In Atwater and Severinghaus (this vol-
ume) we describe some details of the construction of these plates.
Segments of the maps in the plates will be used in Figures 4
through 12 to examine the spreading histories of local regions.
The areas covered by these figures are shown in red on Figure 2.

The primary difference between previous interpretations
and the new ones presented here is our liberal use of propagating
rift traces (pseudofaults and shear zones) wherever they are sug-
gested by the data. These features, described in Hey and others
(this volume), are the mechanism by which mid-ocean ridges
reorient themselves following changes in direction of spreading
and also seem to be associated with hot spots, although the rela-
tive importance of these two factors is not resolved.

Magnetic anomalies are dated by comparing them to the
sequence of polarity reversals documented for the Earth’s mag-
netic field. Magnetic anomalies will often be referred to in the text
by their identification numbers with numbers in brackets to show
ages in millions of years according to the revised polarity reversal
scales of Kent and Gradstein (1985) and Berggren and others
(1985). Portions of these time scales are presented on the plates
and figures, as needed.

Atwater, T., 1989, Plate tectonic history of the northeast Pacific and western North America, in Winterer, E. L., Hussong, D. M., and Decker, R. W., eds., The
Eastern Pacific Ocean and Hawaii: Boulder, Colorado, Geological Society of America, The Geology of North' America, v. N.
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Figure 25. Approximate configuration of subducting slabs beneath North
America for selected times in the Cenozoic, after Severinghaus and At-
water (1989). Numbers show ages in Ma. Slab length depends upon the
age of the lithosphere when it enters the trench and the subduction
velocity. Fast subduction of mature lithosphere produced long slabs in
the early Cenozoic. Later, younger lithosphere was subducted more
slowly, producing shorter slabs. The growth of the Pacific-North Amer-
ica plate boundary was accompanied by a growing gap in the slab.

sloping, cool base of the thin continental plate (Fig. 26). Heat
escapes upward through the continent, and the asthenospheric
rocks below cool, harden, and form new lower continental litho-
sphere. (This is somewhat analogous to the way in which oceanic
lithosphere thickens.) The heat flows through the upper plate to
the surface, creating a heat-flow anomaly.

One complication in heat-flow interpretation is that earth
materials are poor heat conductors, so that a pulse of heat takes a
long time to reach the surface. Thus, the maximum surface heat
. flow will not be found near the Mendocino edge but rather
should be observed somewhere south, where the heat pulse has
had time to make its way up through the crust. The observed
heat-flow maximum near San Francisco fits this prediction very
well if the original upper plate thickness was about 20 km (Lach-
enbruch and Sass, 1980; Zandt and Furlong, 1982). Other
geophysical information also supports the slab-edge model in
Figure 26. Gravity data collected near Cape Mendocino fit a
model that includes the edge of the descending Gorda slab and
thin lithosphere to the south (Jachens and Griscom, 1980), and
seismic data show that the lithosphere is thin at Mendocino and
thickens southward (Zandt, 1981).

The heat-flow time lag can also be invoked to explain the
exceptionally low surface heat flow measured in the Sierra
Nevada. The Cenozoic subducting slab would have kept this
region cool, and the heat pulse following the rather recent remov-
al of the slab would not yet have penetrated through the great
crustal thickness.

Initiation and development of the Pacific-North America
plate boundary—the San Andreas regime

Transition of regimes at the Rivera triple junction—
ridge/trench to fault. The most obvious consequence of the
growth of the Pacific-North America boundary has been the
development of the San Andreas system. A primary problem in
understanding this development concerns the manner in which
the new plate boundary becomes established following the de-
mise of the intervening plate. Figure 27 shows conceptual cross
sections of the Pacific, Farallon, and North American Plates dur-
ing the Cenozoic. The top section, Figure 27A, depicts the ocean-
continent cross section for the early Cenozoic: an offshore oceanic
spreading center and a subduction zone at the coast. The bottom
section, Figure 27D, represents the present San Andreas system:
the Pacific Plate includes the attached rim of the continent, while
the rest of North America is moving away out of the page past it.

Figure 27C depicts the moment when the ridge crest meets
the subduction zone, i.e., the first contact between the Pacific and
North American Plates. At that moment, the Pacific-North
America plate boundary is located at the base of the continental
slope, offshore. At the present time, Figure 27D, the boundary is
not there, but rather is inland, within the continent./To under-
stand the early stages of development of the San Andreas system,

- we need to discover how this transition takes place.

One way to study this is to examine the similar but more
recent transition that occurred around Baja California following
the passage of the Rivera triple junction. We have noted that the
Pacific-North America boundary was probably established about
12.5 Ma, nearly simultaneously all along central and southern
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Figure 26. Conceptual block model of the Mendocino triple junction,
showing transition from subduction regime to San Andreas regime, with
the Mendocino slab gap edge at depth beneath the junction, after
Lachenbruch and Sass (1980). M = Mendocino transform fault, SAF =
San Andreas fault. Open arrows show motions with respect to a fixed
Pacific Plate. Small arrows show likely motions in the asthenosphere.
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Figure 27. Conceptual cross sections of Pacific, Farallon, and North American lithospheric plates and
the late Cenozoic transition in regimes, after Atwater (1970). Contours are schematic lithospheric

isotherms. A: Ridge, trench, and down-going slab as they probably were in the early Cenozoic: B: As the

spreading center approached the trench, the Farallon plate narrowed. It delivered younger, thinner,
hotter lithosphere to the slab so that the latter had a shorter lifetime in the mantle before heating up.
C: The ridge arrived at the trench and the Farallon plate ceased existence. The Pacific and North
American plate came into contact. D: Present situation. The Pacific-North America boundary has
shifted inland to the San Andreas fault, transferring the edge of North America to the Pacific plate. The
timing and nature of this transfer should be expressed in the early history of the San Andreas regime.

ja (Figs. 10 and 24B). The present-day plate boundary consists
a number of transform faults connecting small spreading basins
the Gulf of California, but this rather simple boundary was
ly established about 3.5 Ma. Prior to that time, the plate mo-
n was spread over a broad band of faults in the Gulf (Lonsdale,
s volume), but even this form of the inland boundary only
gan about 5.5 Ma (Moore and Curray, 1982; Curray and
oore, 1984; Lonsdale, this volume).

Where was the boundary between 12.5 and 5.5 Ma?
Spencer and Normark (1979) document a major throughgoing
fault zone along the Pacific edge of Baja California, the Tosco-
Abreojos fault zone, shown in Figure 10. They suggest that this
was the major Pacific-North America plate boundary before it
shifted inland. The Gulf of California region was not without
tectonism during this earlier time period. Normal faulting is seen
all along the edges of the Gulf, beginning between about 12 and
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10 Ma in mariy places (Gastil and others, 1979; Stock and
Hodges, 1989) and forming a shallow marine “proto-Gulf’
(Karig and Jensky, 1972; Moore and Curray, 1982).

To summarize, after the triple junction passed, the primary
strike-slip plate boundary was established in the continental mar-
gin for about 7 m.y., with some extension occurring inland.
About 5.5 Ma, Baja California was transferred to the Pacific
plate, and the primary plate boundary shifted inland. For about 2
m.y., plate. motion was taken up across a broad set of faults until
the major throughgoing system was established.

This scenario for the Gulf of California is very similar to the
one that may be postulated for the early development of the San
Andreas system in southern California, as well. The earliest on-
land manifestations are the opening of basins and accompanying
volcanism, starting about 23 Ma. Presumably the first strike-slip
faults lay in the continental margin, since onshore strike-slip fault
systems appear to have developed later, about 18 to 16 Ma, and
migrated inland over time. Furthermore, the fault systems may
have been more diffuse in their early stages, as implied by the
rotations of the Transverse Range blocks. The present situation,
with much of the motion being taken up on one or two major
throughgoing faults, is a relatively recent development, starting
about 12 Ma. In the next few sections I shall document and
develop this history, but first we must examine the characteristics
of the other junction, the Mendocino triple junction.

Lengthening of the San Andreas regime at the Mendo-
cino triple junction—trench to fault. After the inception of
the Pacific-North America plate boundary about 27 Ma, the
boundary on North America was continually lengthened north-
westward, following the drift up-coast of the Mendocino triple
Junction. As this junction passed, an observer standing on North
America would have seen a change from subduction to strike-
slip. Note that this tectonic transition should be quite different
from those associated with the Rivera triple junction since.in this
case an old, cold subduction regime is being replaced by an old,
cold strike-slip system. The appearance of the boundary onshore
should be immediate. Indeed, the strike-slip regime might actu-
ally extend past the junction, as it appears to be doing at the
Mendocino triple junction at present (see Fig. 29).

Some interesting insight concerning this transition can be
gained by examining the plate tectonic geometry of the Mendo-
cino triple junction: it is intrinsically unstable. McKenzie and
Morgan (1969), in their classic treatise, showed that triple junc-
tions can be stable or unstable, depending on their geometry and
the nature of the boundaries involved. At a stable triple junction,
the three plates concerned can continue to move as they have in
the past, and the triple junction joining them will retain its con-
figuration and boundary types. An unstable junction, on the other
hand, is required by the evolving plate geometry to change type or
to reorganize its configuration as plate motions continue. The
Mendocino triple junction is slightly unstable, and many geologic
effects in its vicinity can be thought of as results of this instability.

The Mendocino triple junction is a fault-fault-trench
(F-F-T) junction. Figure 28A shows one of the few configura-

tions of this junction type that is stable, namely a F-F-T junction
in which the trench and one transform fault are colinear. This
type of stable junction would occur if the San Andreas fault (ie.,
the Pacific-North America plate motion direction) were exactly
parallel to the coast. Figure 28B is a slightly more realistic version
of the present-day junction. The San Andreas fault direction is
about 10° west of the trend of the coastline and trench. As the
plates continue their motions in this case, a small triangular space
appears at the junction (red triangle on Fig. 28B). There is no
spreading center at the junction to fill in the triangular space.
Thus, this junction is intrinsically unstable and must constantly
readjust. McKenzie and Morgan (1969) and Dickinson and
Snyder (1979a) present more detailed and abstract analyses of
this instability that the geometrically inclined reader may wish to
explore.

Two geologic solutions to the geometric instability of the
Mendocino triple junction seem likely. One possibility is that
pull-apart basins are regularly being formed inland of the San
Andreas near the junction. This would predict a time transgres-

Figure 28. Idealized geometry of the Mendocino-triple junction, a fault-
fault-trench (F-F-T) triple junction. PA. = Pacific Plate; J.F. = Juan de
Fuca Plate; N.A. = North American Plate. A: Stable configuration for a
F-F-T junction: The trench and one fault are colinear. As plate motions
proceed, the junction maintains its geometry and boundary types.
B: Approximation of the present Mendocino junction. The San Andreas
fault and the Cascadia trench are not colinear. When the plates move,
the triangular gap that appears at the junction (red triangle) must be
accommodated by the surrounding regions. This junction is unstable.
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sive, broadening belt of basins forming the eastern side of a stable,
permanent San Andreas fault line. A second solution is that the
San Andreas boundary shifts sideways, inland, from time to time,
thus realigning its northern terminus with the trench. Note that
this second solution is a variant of the first, simply transferring the
extension to pull-apart basins farther south in the fault system.

The second solution, an inland shift, is very clearly shown in
the young continental structures around Cape Mendocino today.
The main strand of the San Andreas fault lies in the continental
shelf here, but many obviously related structures are presently
active inland of the junction (Fig. 29). Strike-slip faults with the
San Andreas trend and slip sense lie more than 70 km inland of
the junction, connecting to the coast and offshore systems via
thrust faults as much as 150 km to the north (Kelsey and Cash-
man, 1983; Kelsey and Carver, 1988). The strike-slip faults con-
nect to the main San Andreas strand to the south via pull-apart
basins. Herd (1978) postulates the existence of a microplate, the
“Humboldt Plate” (Fig. 29), that moves partly with North Amer-
ica, partly with the Pacific. Presumably this platelet is in the
process of being transferred from the former to the latter (Kelsey
and Carver, 1988).

Displacement history from fault offsets. One good way
to quantify the geologic history of the Pacific-North America
plate boundary would be to measure the amount and timing of
late Cenozoic deformation and fault displacements along the
boundary. Tectonic maps of California show a number of faults
in the region, especially between the San Andreas fault and the
continental margin (Fig. 30), all of which need to be quantita-
tively described. It appears that the present San Andreas fault
itself is only the most recent strand to dominate the plate bound-
ary and that the San Andreas system has gradually been stepping
eastward into the continental interior and gradually transferring
continental slivers from the North American to the Pacific plate.
To quantify this evolution, both the magnitude and the timing of
all fault offsets would need to be measured in some detail.

It is an unfortunate fact that measuring and dating offsets on
strike-slip faults are difficult tasks, requiring a large amount of
both hard work and good luck. One must search both sides of the
fault for small, unique, datable geologic features that crossed the
fault at high angles and were subsequently offset. Such serendip-
itous pairs of localities are called “piercing points” (Crowell,

1962). In spite of the difficulties, a large number of piercing
points of various reliability and precision have been documented
- over the years. Some of these will be described below.

The most dramatic geologic match across the San Andreas
fault is one that was described in the classic, groundbreaking
work by Hill and Dibblee (1953). The northernmost outcropping
of Sierran granite on the east side of the present strand of the San
Andreas is near the San Emigdio Mountains; on the west side it is
at Bodega Head. This offset implies a minimum of 510 km of
right slip sometime since the Late Cretaceous. Since we do not
know the extent of granite beneath the shallow waters north of
Bodega Head, this number is a minimum. The actual displace-

- ment could be as much as 600 km (Silver and others, 1971). This
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Figure 29. Active faults in the vicinity of the Mendocino triple junction,
after Kelsey and Carver (1988). The main strand of the San Andreas
fault lies offshore, but major young faulting also occurs inland of the
Junction. The “Humboldt Plate” (Herd, 1978) may be in the process of
being transferred from the North American to the Pacific Plate.

offset and the others discussed ‘in this section are tabulated in
Table 2.

In central California, a well-constrained piercing point (the
Pinnacles and Neenach volcanic formations) establishes that the
San Andreas has been offset about 315 km since 23.5 Ma (Huff-
man, 1972; Matthews, 1976). The discrepancy of 200 to 300 km
between the Pinnacles and Bodega Head offsets along the present
strand was worrisome to early workers, but it now seems likely
that the difference can be found on the other adjacent faults to the
west of the Pinnacles point. Loosely constrained estimates of 115
km and 55 km of right-lateral slip on the San Gregorio-Hosgri
and Rinconada faults (Graham and Dickinson, 1978; Dibblee,
1976, respectively) and a modest, unknown amount of distrib-
uted shear within the blocks (Greenhaus and Cox, 1979) and on
other faults bring us well within the Bodega Head range of total
displacement (Hornafius and others, 1986).

An alternative explanation for the discrepancy in offsets just
described is that the granites west of the San Andreas were never
part of the Sierran belt but rather are exotic terranes. This inter-
pretation is supported by some paleomagnetic measurements in
the Salinian block indicating that it was 2,000 to 3,000 km
farther south in the Cretaceous and was accreted to California in
the early Cenozoic (Kanter and Debiche, 1985). On the other



60 T. Atwater

N - /

A\ \ Basin and Range Province
/ Sierra Nevada
g, : ot San Joaquin Valley 5?,\" 4 NG . NG
‘;", y v\-——— - p é? /_—W—l—___—_
MTJ 7 - ”BH : - "&’(I; @ —_.’ California Borderland/
Humboldt Plate SG v
Salinian Block ¥ M —~——— N
& g & % $

Figure 30. Major faults of the Pacific-North America Plate boundary. Main San Andreas strand (SAF)
is shown in red, but motion occurs on many faults and appears to have been shifting inland through
time. Triangles show Pinnacles-Neenach piercing point. Granites at Bodega Head (BH) and the San
Emigdio mountains (SEM) may supply another tie. GF: Garlock fault, SGH: San Gregorio—Hosgri fault,
RIN: Rinconada fault, MTJ: Mendocino triple junction. Measured and estimated offsets on these faults

are tabulated in Table 2.

hand, workers studying the granitic and metamorphic rocks in the
same block document great similarities with the southern Sierra
Nevada (Mattinson and James, 1985). In either case, the younger
offsets on the San Andreas system still hold. The primary interest
in the granite offset is that it gives us a broader total displacement
than can be measured on the central Californian strands, so that it
is quite useful, if true. »

The timing on central Californian faults is, for the most part,
not well constrained. The initiation of wrench folding in the San
Joaquin valley adjacent to the San Andreas fault indicates that
some motion began about 16 Ma. However, Dickinson and
Snyder (1979a) suggest that major motion on this strand did not
begin before about 12 Ma, and another piercing point documents
that about 200 km of offset, or about two-thirds of the total, has
occurred since 7 Ma (Huffman, 1972; Dickinson and others,
1972). Although some weak evidence suggests that the offsets on
the faults to the west are also young (Graham and Dickinson,
1978), the Transverse Range rotations (as well as my own preju-
dices) suggest that the offsets should be primarily older, taking up
at least 150 km of the Pacific-North America shear between 16
and 10 Ma (Hornafius and others, 1986). Dickinson and Snyder
(1979a) also assume that early motion was taken up by these and
other faults offshore. This history of activity stepping inland
through time is reminiscent of the features near the Mendocino
triple junction. As we can with the Humboldt Plate, we may
visualize a (somewhat deformed) Salinian Plate that has been
gradually transferred from the North American to the Pacific
Plate as the San Andreas system moved inland.

Southern California and northernmost Baja California are,
by far, the most complicated parts of the San Andreas system.
Late Cenozoic structures in this region include the rotated Trans-
verse Ranges; numerous strike slip faults both subparallel to the
San Andreas and in other directions; numerous basins, both pull

apart and compressional; and mountain uplifts with variable his-
tories. The continental shelf here, the broad California border-
land, is profoundly fractured and rifted.

The predicted plate tectonic history of this region is likewise
complex, as implied by Figures 21 and 24B. The first contact
between the North American and Pacific Plates was near this
region, off northern Baja California, and from that time until
about 16 Ma, the Rivera triple junction, usually including a
young, hot spreading center, lay offshore and shifted back and
forth. During that period, and also the next when the boundary
extended southward along the Pacific margin, this region acted as
the connection zone between the southern offshore boundary and
the onshore motion on the San Andreas system. This geometry, a
right step in a right-lateral system, is intrinsically extensional—a
“releasing geometry” (Crowell, 1974; Hornafius, 1985).

The plate boundary geometry in southern California
changed about 5.5 Ma, with the transfer of Baja California to the
Pacific plate. After the transfer, this region again acted as a con-
nection zone, but now it was between the inland boundary in the
Gulf of California and the more seaward faults of the San An-
dreas farther north. The new geometry, a left step in a right-lateral
system, is intrinsically compressional—a “restraining geometry.”
As a further complication, Neogene expansion of the Basin and
Range Province occurred primarily north of this latitude and was
compensated by east-west left-lateral shear in this region. It is no
wonder that this region is so complex!

Displacement history from block rotations. A second
technique for estimating fault displacements, one that is still
somewhat unproven but holds great promise, concerns the large-
scale rotations of intact blocks and the geometric constraints im-
posed by such rotations. Both the timing and the magnitudes of
rotations of geologic blocks are relatively easy to measure using
paleomagnetism. A great many rocks within a given terrain carry
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TABLE 2. SUMMARY OF LATE CENOZOIC OFFSETS PARALLEL

TO THE SAN ANDREAS FAULT*

Amount, Age Reference
km
Strike Slip Fault Offsets
Northern San Andreas (NSA) 550 = 40 Neogene 1
Central San Andreas (CSA) 315 £ 5 Post 16 Ma 2,3
200 + 10 Post 7 Ma 2,4
Southern San Andreas (SSA) 300 = 10 Post 5.5 Ma 2,5,6
(+ San Jacinto + Elsinore)
San Gregorio—Hosgri (SGH) 115 + 10 Neogene 7
Rinconada (RIN) 55 + 10 Neogene 8
Hayward—Rodgers Creek (HRC) 43 + 5§ Post 8 Ma 9
Carneros—Calaveras (CAC) 28 + 10 Post mid Mioc. 9
Distributed Shear
Salinian block (SAL) 40 + 25 Most20to 16 Ma 10
So. Sierra Orocline (SSO) 50 + 50 23(?) to 16 Ma 11
Basin and Range (B&R) 100 + 25 Late Neogene 12

*Data for Table 3 and Figure 32. Ages and slip distances adapted from the cited

references. Modifications discussed in text.
References:

1. Hill and Dibblee (1953)

2. Huffman (1972)

. Matthews (1976)

. Dickinson and others (1972)

. Ehlig and others (1975)

. Hornafius and others (1986)

. Graham and Dickinson (1978)

NO O AW

8. Dibblee (1976)

9. Fox and others (1985)

10. Greenhaus and Cox (1979)

11. Crowell (1987)

12. Stewart and others (1968); Stewart
(1983)

magnetic signatures that were acquired during their formation,
and the present declination of each shows the amount of rotation
it has undergone with respect to magnetic north since it was
magnetized. The paleomagnetic method has a great many pitfalls,
but careful work and a little luck can yield well-timed, specific
results.

Of particular use for the present discussion are the rotation
results from the Transverse Ranges. Although most of the coastal
mountains of California trend northwest-southeast, approxi-
mately parallel to the San Andreas system, the Transverse Ranges
of southern California trend east-west across this grain. Paleo-
magnetic studies of rocks in the Transverse Ranges show that
they have been rotated clockwise as large, coherent blocks by
large amounts during the Neogene. In particular, Luyendyk and
others (1980, 1985) report that many Neogene rocks contain
rotated paleomagnetic directions, and the magnitudes of rotation
as well as their changes through time are consistent across re-
gional areas 40 to 110 km long. This remarkable consistency
suggests that entire blocks within the ranges, shaded on Figure 31,
rotated as coherent pieces. Particularly dramatic are the meas-
urements in the western Santa Ynez Range, where samples from
many rock types and many tectonic situations all indicate a
clockwise rotation of about 95° since 16 Ma.

The time history of these rotations is now fairly well estab-

lished. Hornafius (1985) studied the paleomagnetism of the do-
lomites in the Monterey formation and younger sedimentary
rocks and documented, in detail, the timing of the rotations of the
Santa Ynez range from 16 Ma to the present. These results are
shown in Figure 31B for adjacent segments of the ranges. These
time histories of rotation are interesting in themselves, but in

“addition they provide powerful constraints on the amount and

timing of shear deformation that occurred across the fault systems
both north and south of the ranges. To explain the relationship of
these Transverse Range rotations to the San Andreas shear,
Luyendyk and others (1980, 1985) and Hornafius and others
(1986) combined the known block rotations with known and
implied fault offsets to formulate a quantitative time history of
distributed deformation for southern and central California, as
follows.

Before about 16 Ma, Pacific-North America motion was
primarily accommodated on faults in the continental shelf and at
the continent-ocean join. About 16 Ma, major shear began within
the continent. Between 16 and 10 Ma, a Transverse Range block
rotation of about 55° requires about 220 km offset being distrib-
uted across a region about 200 km in width both to the north and
the south. The overall configuration was a releasing geometry, so
that many pull-apart basins formed in the mismatches around the
rotating terrain. About 12 Ma, the San Andreas broke across the
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Figure 31. Rotations of the Western Transverse Ranges. A: Major Neogene structures of southern
California, after Luyendyk and others (1980). Transverse blocks are shaded. Paleomagnetic vectors
consistently show large clockwise rotations for the Transverse Range and San Gabriel blocks and
relatively small rotations for other regions. B: Paleomagnetic declinations vs. age for rocks in three
adjacent segments of the western Transverse Ranges, after Hornafius and others (1986). Patterns suggest
that all rotated together, clockwise, 50 to 60° between 16 and 10 Ma. Slower clockwise rotation
continued in the western blocks, mostly since about 6 Ma.
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Transverse Range block (San Gabriel fault), and the rotation
nearly ceased.

Since the transfer of Baja California to the Pacific Plate
about 5.5 Ma, the majority of the Pacific-North America plate
motion has been taken up in offsets on the San Andreas fault,
inland; lesser amounts have been distributed across coastal faults,
corresponding to the additional 35° rotation in the western
Transverse Ranges. The broad-scale configuration has switched
to a restraining geometry, and many southern California basins
have switched from pull-apart to compressive shortening. Super-
imposed upon these effects is the result of the westward expan-
sion of the Basin and Range province. This has resulted in up to
80 km of left-lateral offset on the Garlock fault and extensional
splaying in the Mojave block, adding to the “Big Bend” in the San
Andreas and superimposing a counterclockwise rotation upon the
San Gabriel block.

In a complete compilation of late Cenozoic strike slip,
oblique deformation in the western Basin and Range province
cannot be ignored. Although it seems clear, for the reasons dis-
cussed in an earlier section, that the onset of extension here was
related to earlier events in the region, it is also clear that the
Pacific-North America shear system at the coast has superim-
posed its effects in the western part of the province. Numerous
young northwest-southeast strike-slip features are found here, and
the north-south block faults show oblique slip in mapped fault
features, in geodetic measurements, and in earthquake first-
motion solutions (Stewart and others, 1968; Stewart, 1983;
Thompson and Burke, 1974; Gumper and Scholz, 1971). Zoback
and Thompson (1978) show structures in Nevada that document
an earlier stage of west-southwest—east-northeast extension and a
later northwest-southeast motion. This change is presumed to
arise from the influence of the Pacific-North America shear re-
gime, which was superimposed upon the older structures some-
time between 15 and 6 Ma. Eaton (1980) concluded that this
northwest-southeast deformation is limited to the western, highly
seismic portion of the province, while the eastern portion is still
experiencing east-west extension.

Late Cenozoic pull-apart basins. Another geologic ex-
pression of the Pacific-North America interaction has been the
formation of pull-apart basins. Since the San Andreas motion is
now and may always have been oblique to the coast, the system
has included an amount of extension as well as strike slip. The

resulting instability of the Mendocino triple junction suggests that
the opening of basins may mark its passage. The initiation of
pull-apart basins and activity in them are relatively easily docu-
mented and dated, both because their sediments record the his-
tory and are likely to be preserved and because the pull apart is
commonly associated with volcanism.

The first systematic attempt to track the triple junctions in
the coastal Californian basins was made by Dickinson and
Snyder (1979a). They compiled volcanic dates and initiation
dates for a number of pull-apart basins and compared these to
plate tectonic predictions. Fox and others (1985), Crowell
(1987), Bachman and Crouch (1987), and McCulloch (1987)

refined and detailed these data. The initiation times from these
studies are compiled in Table 3. On Figure 32 they are shown in
their present geographic locations (open symbols) and also in
their reconstructed positions (filled symbols), displaced according
to the offsets compiled in Table 2 to show their approximate
original locations with respect to cratonic North America. These,
in turn, are superimposed on the predicted tectonic regime pat-
tern developed in Figure 24B. Nearly all lie within the predicted
strike slip region. Southern California dates tend to lag the tec-
tonic pattern by a few million years, while northern California
volcanic dates tend to follow the passage of the junction quite
closely, as expected from the discussion of lag times above.

An interesting relationship can be seen in the difference
between the onset ages of the basins and those of the faults in
southern California. The basins record deformation beginning
about 22 Ma, very soon after the Pacific-North America bound-
ary was first established. Strike-slip offsets on the faults appear to
begin later, about 16 Ma, and they are distributed over many
faults at first. It seems that the deformation was more diffuse and
broad in its early stages and became concentrated with time.

The oroclinal bending of the southern Sierra Nevada batho-
lith may be part of the earlier, diffuse deformation. Paleomagnetic
measurements show that plutonic rocks in this block were rotated
clockwise about 45° (Kanter and McWilliams, 1982; McWil-
liams and Li, 1985) sometime between their emplacement at 80
Ma and the addition of their unrotated overlying volcanics and
sediments 16 to 20 m.y. ago. Crowell (1987) links the bending to
the rapid deepening of the adjacent San Joaquin Basin that began
about 23 Ma. Perhaps the oroclinal bending and early basin
formation show an early, diffuse extensional shear regime, active
prior to the inland shift and localization of throughgoing strike-
slip faults. Beck (1986) suggests another alternative, that the
bending was related to drag from early Cenozoic oblique subduc-
tion. Although this is a possibility, the timing is not ideal. As
described above (Fig. 16B), the tangential component of subduc-
tion during much of the Cenozoic may have been small.

Plio-Pleistocene compression in the Coast Ranges. An
additional structural event in coastal California deserves atten-
tion. It has often been noted by California geologists that a pure
strike-slip motion along the San Andreas does not explain some
important young tectonic features, even along the simplest seg-
ment of the San Andreas system in central California. The fault is
a dramatic feature in the landscape here, but most noticeable are
the Coast Ranges: rugged, young fold-and-thrust mountains indi-
cating a component of east-west compression. B. M. Page, in an
extensive personal communication (1982) reported by Engebret-
son and others (1985), listed a substantial number of compressive
events that can be dated as 5 to 3 Ma and younger. We may
conclude that the direction of relative motion along this boundary
has not been quite parallel to the San Andreas fault trace but
rather has included a component of compression in the past few
million years.

A component of compression is also suggested by present-
day global plate-motion solutions. Minster and Jordan (1984,
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TABLE 3. PULL-APART BASINS AND MAJOR VOLCANIC FIELDS,
INITIATION AGES, AND POST FORMATIONAL OFFSETS*

Age, Ma Ref. Offsetst Total Offset,
km

Basins
Los Angeles (LA) 22 1 1 SSA+SSO+B&R 450 = 85
Ventura (VN) 2 + 1 1 SSA+SSO+B&R 450 + 85
San Joaquin (SJ) 21 £ 1 1 SSO+B&R 150 + 75
Central Salinian (CS) 23 + 1 2 CSA+SSO+B&R(+RIN) 490 + 100
Santa Maria (SM) 16 + 2 2 CSA+RIN+SAL+B&R 485 + 55
Offshore S. Maria (OS) 20 + 2 3 CSA+RIN+SGH+SAL+SSO+B&R 675 + 100
Bodega (BO) 20 + 2 3 NSA+SSO+B&R 675 + 90
Point Arena (PA) 23 + 2 4 NSA+SSO+B&R 675 + 90
Volcanic Fieldst
Morro Rock (R) 26 * 2 CSA+RIN+SAL+SSO+B&R 570 + 115
Felton (F) 24 £ 2 CSA+SSO+B&R 465 + 80
Tecuya (U) 24 + 2 SSO+B&R 150 £+ 75
Pinnacles (P) 23 + 3 CSA+SSO+B&R 465 + 80
Iverson (1) 23 2 NSA+SSO+B&R 700 = 115
Neenach (N) 21 £ 2 SSO+B&R 150 £+ 75
Mindego (M) 20 £ 1 CSA+SSO+B&R 465 + 80
Tranquillon (T) 17 £+ 1 CSA+RIN+B&R 470 + 40
Obispo (O) 16 + 2 CSA+RIN+B&R 470 + 40
Triple (L) 16 + 2 CSA+B&R 415 + 30
Page Mill (G) 15 + 2 CAC+HRC+B&R 171 + 40
Quien Sabe (Q) 11 £ 3 B&R 100 £ 25
Berkeley Hills (B) 9 +3 CAC+B&R 128 + 35
Sonoma-Tolay (S) 8 =5 CAC(+HRC)+B&R 140 £ 40
Coyote (Y) 4 £ 1 CAC+HRC+(B&R) 120 + 50
Clear Lake (C) 25+ 1 (B&R) 50 + 50

*Data for Figure 32.

tTable 2. Brackets indicate that less than the full effect was assumed.

}Dates as compiled by Fox and others, 1985.
References:

1. Crowell (1987)

2. Dickinson and Snyder (1979a)

3. McCulloch (1988)

4. Bachman and Crouch (1987)

1987) examined the uncertainties in global least-squares solutions
for Pacific-North America motion, including estimates of the
effects of young deformation in the Basin and Range Province.
They showed that although the uncertainties are large enough to
encompass models from pure slip to those with substantial com-
ponents of compression, the preferred solution is one that in-
cludes a small component of compression along the San Andreas.

Cox and Engebretson (1985) note that the timing of onset of
this compression may correspond to a change in the Hawaiian
hot-spot trace. The Hawaiian chain of seamounts generally fits a
single small circle from the Emperor bend (43 Ma) to Kauai, with
perhaps, a minor shift about 20 Ma (McCulloch, 1988). The
Hawaiian Islands themselves, however, follow a more southerly
trend. This difference may simply be a local variation, but Cox
and Engebretson (1985) and Pollitz (1986) suggest that the

change faithfully records a subtle change that occurred between 5
and 3.2 Ma in Pacific Plate motion over the hot spots. The effect
of this change would be to add a small component of compres-
sion to motion along the San Andreas fault.

SUMMARY AND CONCLUSIONS

The Pacific Plate began as a rather small plate. During the
Mesozoic it grew rapidly, as three plates—the Izanagi, Farallon,
and Phoenix—spread away from it to the north, west, and south,
respectively. During the Cretaceous magnetic quiet period, the
northern border of the Pacific Plate was reorganized with the
birth of the Kula Plate. The Kula Plate was relatively short-lived
but had a fast northward velocity, so that it played an important
role in transporting terranes to the north. The Farallon Plate con-
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tinued to move eastward away from the Pacific and into the
subduction zones beneath the Americas until it became quite long
and narrow. In the Eocene it began to break up, spawning the
Vancouver Plate to the north and then the Nazca Plate to the
south. The resulting smaller plates became unstable in their mo-
tions, and they, in turn, fragmented as the Farallon-Pacific spread-
ing system approached the trench. When the ridge arrived at the
trench, the intervening plates were lost, and the Pacific-North
America boundary, including the San Andreas fault, was
established.

In order to relate the motions of the oceanic plates to hap-
penings on North America, the locations of these plates with
respect to the continents must be reconstructed. This has been
done in two ways, using an assumed hot-spot reference frame,
and using a ‘round-the-globe plate circuit. Recent breakthroughs
have greatly improved the ability to make reconstructions via the
global circuits, 5o that it can now be done, including the calcula-
tions of uncertainties, back to the Late Cretaceous. The recon-
structions supply paleogeographic maps, trajectories of points,
and plate-velocity histories relative to points on the rim of the
continent. Combined with paleomagnetic information, the recon-
structions document the great northward drift of the Pacific plate
through time and its tremendous drift with respect to North
America.

The subduction of the oceanic plates beneath North Amer-
ica is recorded in the geologic record, particularly by the presence
of arc magmas. The distribution of these rocks shows that the
subduction system beneath the United States suffered a major
disruption during Laramide time, interpreted as a flattening of the
slab, perhaps in response to the subduction of buoyant crustal
materials and/or to a speedup of subduction rate. In the middle
and late Cenozoic, subduction steepened and near-coast subduc-
tion was reestablished. The onset of extension of the Basin and
Range Province is correlated with this steepening or retreat of the
slab. Portions of the subduction zone were then gradually extin-
guished, and the slab developed a growing gap as the Pacific-
American plate boundary—the San Andreas system—lengthened
along the coast.

New global circuit reconstructions allow a well-constramed
plate motion history to be developed for the evolution of the San
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A number of major problems are outstanding. Some con-
cern aspects of the Kula Plate: its motion history between 55 and
43 Ma and the timing and nature of its demise. Since many

~ proposed terrane trajectories use the motions of the Kula Plate,

this is quite important.

The steady improvements in the global plate circuit solu-
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the hot spots may be our only way to reconstruct mid-Mesozoic
plate motions in the Pacific. Quantification of the timing and
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Our understanding of Cenozoic geology in the western

-United States is increasing rapidly with refinement of structural
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