SCEC Crustal Deformation Modeling Workshop Benchmark Descriptions

In order to test the accuracy and speed of various formulations of elastic and viscoelastic calculations, we have developed a series of benchmark comparisons.

All benchmark descriptions assume a Cartesian geometry with right-handed coordinate system, with x running east, y running north, and z running up.  The surface will always be assumed to be at z=0.  If a boundary condition is applied at a depth, d, this will correspond to z = -d.  (Use whatever coordinate system is most convenient for your program, but convert results to the one defined here.)

In order to compare solutions in the most straightforward way, we should all use the same nodal points, to the extent that they are permitted by the various codes.  Thus the problems will be described by their node locations, not the element size.

For example, consider a uniform mesh spacing of 1 km in each direction, so that dx = dy = dz = 1 km.  For linear, brick-shaped elements (aka hexes), the volume of each element would be 1 km^3. For the quadratic serendipity elements in GAEA, each element would be 2 km x 2 km x 2 km (volume = 8 km^3), and the nodes corresponding to the face centers and element centers of each element would be “missing,” so that the distance between some nodes is 2 km.  There would be 5 (or 6) tetrahedral elements for each brick element.

Models will be described at the coarsest level to be run.  Also run them at ½, ¼, 1/8, . . . the original node spacing, going as far as memory, time, and patience allow.  This will make it possible to see how accuracy and speed scale with mesh spacing.

Please keep track of memory useage (preferably including size of stiffness matrix and mean bandwidth), execution time, compiler, compiler options, cpu speed, etc.

Benchmark descriptions:

BM1:  Viscoelastic relaxation of stresses for imposed uniaxial strain.

(The analytic solution will be divulged later.)

Model size:  24 km by 24 km by 24 km cube; 0 <= x, y <= 24 km; -24 km <=z <=0

coarse node spacing: dx=dy=dz=2 km

Poisson solid, G=30 Gpa, visc = 10^18 Pas

No body forces

Boundary conditions:  bottom pinned; sides pinned in x and y, free in z, top pinned in x and y with z displacement 1 m imposed.

Calculate displacements and stresses at t = 0, 1, 5, and 10 yr.

BM2:  Viscoelastic relaxation of stresses for body forces with uniaxial strain boundary conditions.

(The analytic solution will be divulged later.)

Model size:  24 km by 24 km by 24 km cube; 0 <= x, y <= 24 km; -24 km <=z <=0

coarse node spacing: dx=dy=dz=2 km

Poisson solid, G=30 Gpa, visc = 10^18 Pas

Rho = 3000 kg/m^2; g=10 m/s^2

Boundary conditions:  bottom pinned; sides pinned in x and y, free in z, top free.

Calculate displacements and stresses at t = 0, 1, 5, and 10 yr.

BM3:  Viscoelastic relaxation of stresses for imposed simple shear strain.

(The analytic solution will be divulged later.)

Model size:  24 km by 24 km by 24 km cube; 0 <= x, y <= 24 km; -24 km <=z <=0

coarse node spacing: dx=dy=dz=2 km

Poisson solid, G=30 Gpa, visc = 10^18 Pas

No body forces

Boundary conditions:  bottom pinned; sides pinned in y and z, free in x, top pinned in y and z with x displacement 1 m imposed.

Calculate displacements and stresses at t = 0, 1, 5, and 10 yr.

BM4:  Viscoelastic relaxation of stresses for strike-slip fault.

(This problem is numerically challenging because the sides and bottom are rigid, and not far from the fault.  The model is reflected about the plane y = 0)

Model size:  24 km by 24 km by 24 km cube; 0 <= x, y <= 24 km; -24 km <=z <=0

coarse node spacing: dx=dy=dz=2 km

Poisson solid, G=30 Gpa

Top layer (-12 km <=z <= 0) , visc = 10^25 Pas (essentially totally elastic)

Bottom layer (-24 km <=z <= -24 km) , visc = 10^18 Pas

No body forces

Boundary conditions:  top free; bottom pinned; x sides pinned at x=0 and x=24 km.  Side at y=24 km is pinned; side at y=0 has x displacement =0 (symmetry)

Vertical strike-slip fault at x=12 km, 0 km <=y <= 16 km; -16 km <=z <=0.

A uniform slip in the y direction of 1 m is imposed for 0 <=y <=12 km, tapering linearly to zero at y=16 km, and for –12 km <=z <=0 km, with a linear taper to 0 at the tip of the fault at z = -16 km.

Calculate displacements and stresses at t = 0, 1, 5, and 10 yr.

BM5:  Viscoelastic relaxation of stresses for thrust fault, without body forces.

(This problem is numerically challenging because the sides and bottom are rigid, and not far from the fault.  The model is reflected about the plane y = 0)

Model size:  24 km by 24 km by 24 km cube; 0 <= x, y <= 24 km; -24 km <=z <=0

coarse node spacing: dx=dy=dz=2 km

Poisson solid, G=30 Gpa

Top layer (-12 km <=z <= 0) , visc = 10^25 Pas (essentially totally elastic)

Bottom layer (-24 km <=z <= -24 km) , visc = 10^18 Pas

No body forces

Boundary conditions:  top free; bottom pinned; x sides pinned at x=0 and x=24 km.  Side at y=24 km is pinned; side at y=0 has y displacement =0 (symmetry)

45( dipping fault surfacing at at x=4 km, bottoming at x=20 km; 0 km <=y <= 16 km; -16 km <=z <=0.

A uniform thrust slip of 1 m (0.707 m in the z direction and –0.707 m in the y direction) is imposed for 0 <=y <=12 km, tapering linearly to zero at y=16 km, and for –12 km <=z <=0 km, with a linear taper to 0 at the tip of the fault at z = -16 km.

Calculate displacements and stresses at t = 0, 1, 5, and 10 yr.

BM6:  Viscoelastic relaxation of stresses for thrust fault, with body forces.

(This problem is numerically challenging because the sides and bottom are rigid, and not far from the fault.  The model is reflected about the plane y = 0)

Model size:  24 km by 24 km by 24 km cube; 0 <= x, y <= 24 km; -24 km <=z <=0

coarse node spacing: dx=dy=dz=2 km

Poisson solid, G=30 Gpa

Top layer (-12 km <=z <= 0) , visc = 10^25 Pas (essentially totally elastic)

Bottom layer (-24 km <=z <= -24 km) , visc = 10^18 Pas

Body forces:  Rho = 3000 kg/m^2; g=10 m/s^2

Boundary conditions:  top free; bottom pinned; x sides pinned at x=0 and x=24 km.  Side at y=24 km is pinned; side at y=0 has y displacement =0 (symmetry)

45( dipping fault surfacing at at x=4 km, bottoming at x=20 km; 0 km <=y <= 16 km; -16 km <=z <=0.

A uniform thrust slip of 1 m (0.707 m in the z direction and –0.707 m in the y direction) is imposed for 0 <=y <=12 km, tapering linearly to zero at y=16 km, and for –12 km <=z <=0 km, with a linear taper to 0 at the tip of the fault at z = -16 km.

Calculate displacements and stresses at t = 0, 1, 5, and 10 yr.

BM7:  Elastic solution for a circular strike-slip fault.

(The purpose of this problem is to address how well our codes handle curved faults.  By symmetry, the radial displacements should vanish.)

The conceptual model is an elastic disk of radius 200 km, with a circular left-lateral strike-slip fault forming an inner plug rotating inside an outer annulus.  Because of the symmetry of the problem, only the first quadrant needs to be calculated.

The calculation is done in Cartesian geometry, but is easier to describe in cylindrical coordinates.  Mesh is available from MIT web site.  (From www-gpsg.mit.edu scroll down to Computing and click on finite element benchmarks.)

Model size:  40 km thick quarter disk, 1 km <=r <=200 km, 0 <=theta <=pi/2

Poisson solid, G=30 Gpa

No body forces

Boundary conditions:  top free; bottom pinned; x displacement pinned at y=theta=0 and y displacement pinned at x=0 (theta = pi/2)

Vertical strike-slip fault at r=100 km, -16 km <=z <=0.

A uniform left-lateral slip in the theta direction of 1 m is imposed for –12 km <=z <=0 km, with a linear taper to 0 at the tip of the fault at z = -16 km.

Calculate displacements and stresses at t = 0.  By symmetry, the radial displacements should vanish.  See how the model behaves as grid resolution increases.

BMna:  Effects of variable grid spacing:  

In FEM, variable mesh spacing degrades accuracy, but, for economy, we would like to have a variable mesh (e.g., to resolve stress vaiations at fault tips).  Run the above benchmarks with part of the grid at a coarser resolution and part at a finer resolution to investigate these trade-offs.

