

GAMIT/GLOBK In A Day*

M. Floyd and T. Herring

Massachusetts Institute of Technology

GAGE/SAGE Science Workshop Pre-Workshop Course 9–10 August 2021

http://geoweb.mit.edu/gg/courses/202108_GAGE-SAGE/

Material from R. W. King, T. A. Herring, M. A. Floyd (MIT) and S. C. McClusky (now at ANU)

*Or two half-days in the world of virtual workshops

GNSS data from receiver to processing input

Basic stages of GAMIT/GLOBK for geoscience

Raw data formats

Motivation for Receiver INdependent EXchange (RINEX) format

- All manufacturers have developed their own proprietary file formats for data storage specific to their receivers and processing software
 - Problems occur when processing data from another manufacturer's receiver
- RINEX developed by the Astronomical Institute of the University of Berne to allow easy and universal exchange of raw GPS data
 - Principal driver was the large European GPS campaign EUREF 89 involved more than 60 GPS receivers of 4 different manufacturers.

RINEX formats

- RINEX 2
 - Short file names (explained in following slides)
- RINEX 3
 - Long file names (explained in following slides)
- GAMIT formerly worked with the RINEX 2 format and GPS observations only
- Support for RINEX 3 and GNSS (e.g. Galileo, BeiDou, etc.) observations are now available with GAMIT/GLOBK 10.61 and later
 - But RINEX 3 files need to be renamed, copied or linked with a RINEX 2 file name convention to be used (e.g. sh_rename_rinex3)

RINEX 2 data format

- Includes text file formats for:
 - observation ("o")
 navigation ("n")
- } most important for most users
- meteorological ("m")
- ionospheric data ("i")
- Latest definition at ftp://igs.org/pub/data/format/rinex211.txt
- Each file type consists of a header section and a data section
- Header section contains global information for the entire file and is placed at the beginning of the file.
 - Contains header labels in columns 61–80 for each line contained in the header section
 - These labels are mandatory and must appear exactly as per format description
- RINEX 2 filename convention:
 - For site "ssss", on ordinal date (day-of-year) "ddd", session "t" and year "yy":
 - ssssdddt.yyo (RINEX observation file, i.e. the site's phase and code records)
 - ssssdddt.yyn (RINEX navigation file, i.e. the broadcast ephemeris)
 - e.g., hers1270.030 is observation data for Herstmonceux, day 127, session 0, year 2003
- All dates and times in GPST

An example of RINEX 2 observation data

RINEX 3 data format

- Must be able to accommodate increased number and complexity of observations from multi-GNSS observations (GPS, GLONASS, Galileo, BeiDou, etc.)
- Latest definition at ftp://igs.org/pub/data/format/rinex303.pdf
- Each file type consists of a header section and a data section
- Header section contains global information for the entire file and is placed at the beginning of the file.
 - Contains header labels in columns 61–80 for each line contained in the header section
 - These labels are mandatory and must appear exactly as per format description
- RINEX 3 filename convention is longer and more complicated than for RINEX 2, e.g.

An example of RINEX 3 observation data

Observation codes more complicated than RINEX 2 (see Tables 4–10 of current RINEX 3(.03) document)

Compressing/Uncompressing RINEX

• File compression

- "*.zip" files
 - Unzip using "unzip", "pkzip" or "WinZip"
 - See http://www.pkware.com/ or http://www.winzip.com/, or http://www.7-zip.org/
- "*.??o.Z" (RINEX 2) and "*.rnx.gz" (RINEX 3) files (UNIX compress or gzip)
 - e.g., hers1270.03o.Z, TG0100USA_R_20153650000_01D_30S_GO.rnx.gz
 - Uncompress using "uncompress", "gunzip", "7zip", "WinZip" or similar
- "*.??d.Z" (RINEX 2) and "*.crx.gz" (RINEX 3) files (Hatanaka compression)
 - e.g., hers1270.03d.Z, TG0100USA_R_20153650000_01D_30S_GO.crx.gz
 - Need to uncompress as above to get *.??d and *.crx files
 - Then need to "unHatanaka" using CRX2RNX from http://terras.gsi.go.jp/ja/crx2rnx.html
- Leica Geo Office uncompresses files automatically when using "Internet Download" tool
 - For manual import you need to uncompress the files manually

runpkr00 (Trimble raw to dat)

- Proprietary software from Trimble
- Maintained by UNAVCO nowadays
 - http://facility.unavco.org/kb/questions/744/
- Converts raw data from Trimble receiver to teqc-compatible input "dat"-file, e.g.
 runpkr00 -g -adeimv <raw file> [dat-file root]
- Always use "-g" option and separately from other options

Pre-processing data

- Some level of data quality control may be performed prior to any data processing
- Utilities are available to perform simple but valuable tests
 - The most common example is TEQC (pronounced "tek")
 - Translate, Edit, Quality Check
 - Translates common binary formats to RINEX format
 - Header editing, windowing, splicing of RINEX data
 - Quality check in "lite" mode (no navigation file) or "full" mode (navigation file available)
 - Download for free from http://www.unavco.org/facility/software/teqc/teqc.html#executables

Using teqc

- Be sure to use correct raw format teqc -tr d <Trimble .dat file> teqc -ash d <Ashtech B-file, etc.>
- Ability to control observations using "-O.obs" option teqc -0.obs L1L2C1P2 -tr d <Trimble .dat file>
- Ability to control header information with other "-O.xxx" options teqc -0.0 "M. Floyd" -0.obs L1L2C1P2 -tr d <Trimble .dat file>
- May create and use a teqc configuration file for consistent information teqc -config teqc.cfg -tr d <Trimble .dat file>
- Use a script or command line loop to create RINEX files in batch

Using teqc

- Quality Control (QC)
 - In "lite" mode, teqc doesn't know anything about the satellite positions teqc +qc site1891.020 > teqc.log
 - 7 files generated; use the -plots option to prevent all but the summary ('S') file being generated
 - In "full" mode, additional information is available based on the satellite positions

```
teqc +qc -nav site1891.02n site1891.02o > teqc.log
```

- 9 files generated (elevation and azimuth of satellites)
- Full solution if navigation file matches observation file, e.g. site1891.020 and site1891.02n

```
teqc +qc site1891.02o > teqc.log
```

RINEX 3 translation

- teqc is not designed for RINEX 3
- Other programs are often available direct from the manufacturer, e.g. Trimble's ConvertToRINEX

Site ID clashes

- When naming a new site, check against lists of known site IDs to avoid clashing, e.g.
 - IERS station list (https://itrf.ign.fr/doc_ITRF/iers_sta_list.txt)
 - UNAVCO Data Archive Interface (https://www.unavco.org/data/dai/)
 - SOPAC Check Site ID (http://sopac.ucsd.edu/checkSiteID.shtml)
- If you have a site that is already named and clashes with a known site that is contained in GAMIT/GLOBK's default tables, e.g. station.info or igb14_comb.apr, then just be sure that the site information you intend to use is in the copy of the tables in your processing directory (more in later slides)

Site identification errors

Antenna setup errors

- Episodic survey setups can mean that measurements are not centered perfectly over a mark or the antenna height not measured accurately
- Note any inconsistencies for metadata files or later correction
- This can also happen for continuous sites, where incomplete, inaccurate or missing maintenance records

Log (metadata) and archive errors

Critical: antenna type (serial #); height and type; monument ID

2.10		OBSERVA	ATION	DATA	G (GPS)		RINEX V
teqc 2006	Jul20	UNAVCO	Archi	ve Ops	20060725	16:48:29U	TCPGM / R
Solaris 5.	9 UltraSp	parc IIi	сс – х	arch=v9	SC5.5 =+	- *Sparc	COMMENT
BIT 2 OF L	LI FLAGS	DATA COL	LLECTE	D UNDER	A/S CONE	ITION	COMMENT
U626							MARKER
U626							MARKER
UNKNOWN		Stanfo	rd Uni	versity			OBSERVE
3414A05687		TRIMBLE	E 4000	SSE	NP 5.71	/ SP 1.26	REC # /
3015A00136		TRM1453	32.00				ANT # /
-2683218	301 4 -418	35018.710)2 39	83204.9	361		APPROX
(1.	4755 🔵	0.000	00	0.0	000		ANTENNA
1	1						WAVELEN
5	L1 L2	C1	P1	P2			# / TYP
30.000	0						INTERVA

1994	9	28	16	7 3	30.0000000	GPS
94 9 28	16 7	30.0	000000	0 5G	5G 6G17G20G24	
243747	7.4885	6 1	792564.	39355	22428902.4774	
-54822	6.7765	57 -	402556.	82256	20834866.1484	
-56750	9.5655		371824.	37155	22860949.9614	
120305	7.7465	57	883752.	12057	20612879.2734	
79313	8.1275	5	501650.	82355	22928979.6334	
/9313	8.12/5	5	201020.	82355	229289/9.6334	

Prepare metadata

- Many user issues can be traced back to poor quality control of metadata (e.g. site information) or approximate coordinates
- Take time to ensure that information from the field or other site installation logs is included and formatted correctly for GAMIT
- This mostly concerns two files:
 - station.info contains information about site ID, antenna, receiver, antenna height, and start and stop times)
 - An a priori coordinate file, sometimes called the "I-file", contains the approximate positions, and should be complete and accurate (to within at least a few m) for all sites

station.info

- Metadata of sites around the globe for which we know accurate information is listed in ~/gg/tables/station.info
- Using the script sh_upd_stnfo, we can:
 - Truncate this file only to include the sites we intend to process, using the list written to tables/sites.defaults
 - Add sites from a variety of standard sources, e.g. the RINEX file header, assuming it is accurate, or IGS logs for publicly available global sites
- We can also add sites metadata manually, taking care to align columns exactly using whitespace characters (not tabs)

a priori coordinates file

- Coordinates of sites around the globe for which we know accurate coordinates are listed in ~/gg/tables/igb14_comb.apr
 - This will be combined with whatever other file you list with "set aprf =" in tables/process.defaults, which is the file in which you may put your sites' approximate coordinates
- We already saw one way of calculating an approximate position from RINEX data for unknown sites, using teqc
- GAMIT/GLOBK also has utilities to help with this
 - sh_rx2apr
 - rx2apr
- sh_rx2apr reads a RINEX 2 file (RINEX 3 currently not supported) and a broadcast ephemeris (satellite position) file, e.g.
 - sh_rx2apr -site abdc1000.210 -nav brdc1000.21n
 - brdc1000.21n can be downloaded with "sh_get_nav -yr 2021 -doy 100"
- It can also perform a relative calculation for greater accuracy using a reference site with known coordinates, e.g.
 - sh_rx2apr -site abdc1000.210 -nav brdc1000.21n -ref monp1000.21o -apr ~/gg/tables/igb14_comb.apr

Additional models and corrections

- Other than the information provided by the user and within the default tables in the GAMIT/GLOBK distribution, some additional files must be downloaded separately due to their size
- These are generally grid files of ocean tide loading, atmospheric loading and atmospheric delay models
- Download the required file(s) from ftp://everest.mit.edu/pub/GRIDS/ to a ~/gg/GRIDS/ directory
 - Symbolic links in ~/gg/tables/ will then be complete automatically

Links to software

• runpkr00

http://kb.unavco.org/kb/article/trimble-runpkr00-v5-40-latest-version-mac-osx-10-7-windows-xp-7-linux-solaris-744.html

• RINEX Converter

ftp://ftp.ashtech.com/Spectra-precision/Utility%20Software/RINEX%20Converter/

• TEQC

https://www.unavco.org/software/data-processing/teqc/teqc.html

ConvertToRINEX

http://www.trimble.com/support_trl.aspx?Nav=Collection-40773&pt=Trimble RINEX