# Gravimetric Survey in the VIDAL quadrangle, continued 

Field Camp 2005

Vivian Leung, William McGehee, Shelsea Pedersen, Adele Schwab, Shaye Storm


#### Abstract

The primary objective of the study was to develop a subsurface map of the area being surveyed using gravity measurements taken at distinct points throughout the region. The location of the survey was the same as the previous year. Last years data was therefore taken into consideration when deciding where to take measurements this year. The gravity data was interpreted with the surface geology in mind. The region contained faults and various rock formations. Gravity measurements were taken every 200-300 meters to cover all the area needed for a better understanding of the region and its subsurface formations. In order to determine the density of the alluvium which covered a substantial portion of the geology of the region, gravity measurements were taken at the edge of a wash at two distinct elevations. The gravity measurements were also used with the purpose of improving last year's geology map. Once all of the field work was completed the MATLAB scripts from previous years were cleaned up and organized for a more logical flow of corrections. Due to new restrictions on airplane cargo, the gravimeter had less than ideal time to warm up before being taken out for measurements. A warm up test was performed back at MIT to get a preliminary understanding of the effect of temperature on the gravimeter readings.


## I. Introduction

## Method

The main objective of the field study was to develop a subsurface map of the region being studied. The means by which this was accomplished were analyzing slight changes in gravity across the region using the highly sensitive LaCoste and Romberg gravimeter. In the effort to understand the subsurface structures of an area based on surface gravity measurements, one would wish to take all their measurements in exactly the same manner and at exactly the same time so that any trends found in data would be due to actual subsurface structures, not one of the many predictable aberrations in local gravity that exist. Since this is not possible, one must be concerned about the effects these aberrations have on data including the natural drift in the precision of our mechanical gravimeter, tidal influences, elevation changes, effects of varied terrain, and the effects of the earth's latitude dependent oblateness as they are described in following sections.

Location at Base Camp and Local Geology
Latitude - $34.062513490^{\circ} \mathrm{N}$
Longitude - 245.455947957 ${ }^{\circ} \mathrm{W}$

Ellipsoidal Height - 234.5261 (m)
Geoidal Height - 31.5 (m)
The Riverside Mountains are composed of four main groups of rocks. The oldest are Precambrian rocks at the north of the mountains. These contain a metaigneous unit including augengneiss, leucogranite, and granite with quartz veins as well as a metasedimentary unit including biotite schist, quartzite, and gneiss. Much of the Precambrian is mylonitic and contains folds ranging from the centimeter to meter scale. Outcrops usually have a dark orange-brown desert varnish tinged with maroon. The next oldest are Paleozoic rocks from part of the Grand Canyon sequence, including the Permian Supai formation, Mississippian Redwall, Devonian Temple Butte, Cambrian Upper Muav and Cambrian Lower Muav. These are limestones and dolomites which have been partially metamorphosed into marbles. At the south of the range, and partially at the east, there are rocks of Mesozoic age. These include metagranite, calcareous schist, a magmatic suite containing porphyry and a weathered granite and the Jurassic Planet Volcanics. Finally to the west of the mountains are Tertiary rocks. These include various sandstones, and conglomerates as well as scattered sections of lake sediments. Many of these rocks are characterized by a dull clay red color that is visible from a distance.
The Tertiary section is mostly defined by two faults. The eastern side is bound by a shallow detachment fault dipping $\sim 10^{\circ}$ to the west. The western side is bound by another detachment fault dipping to the east. To the south, the eastern detachment begins to curl northwards. The Tertiary is surrounded by Precambrian rocks at the north and west, Mesozoic rocks at the south, and Paleozoic and Mesozoic at the east. The Paleozoic and Mesozoic are connected through a complex series of faults and overturned faults. That section is separated from the Precambrian by a northeast-southwest thrust fault dipping ~30$40^{\circ}$ north. This fault is cut off by the eastern detachment and reappears with metagranite in the hanging wall.

## Regional Geology

To the north of the Riverside Mountains are the Basin and Range provinces of Nevada. This is a series of north-south longitudinal mountain ranges separated by expansive basins. They are created by continuing widespread extension causing tilted fault blocks and forming large scale horses and grabens. Closer to the Riverside Mountains, the Colorado River Extensional Corridor carries extensional activity to the south.
The west coast of the United States has been and is an active continental margin due to the complete subduction of the Kula
plate, continuing subduction of the Fallon plate and the northward strike-slip motion of the Pacific's plate relative to the North American plate. The western margin of the North American plate has been growing due to island arcs accreting to the continent.

## II. Procedures

## Gravimeter

A LaCoste and Romberg gravimeter was used to take the gravity measurements in the field. The design of the gravimeter enables it to detect very slight changes in gravity. A mass is held on the end of a horizontal bar. A spring is attached to the bar at approximately a 45 degree angle. The spring is used to restore the mass to its designated "initial" position. The amount of force needed for the spring to bring the mass back into this position is converted into a gravity reading taken from the dial using a series of levers. The gravimeter is composed of metal parts. This requires that its internal temperature be maintained to prevent thermal contraction or expansion. The gravimeter is therefore completely sealed and its temperature is maintained using a battery powered heater. Mechanical drift due to creep in the metal spring will occur in the gravimeter. This required base camp gravity measurements at the start and finish of each day to be able to account for the drift.


Figure 1: Using the gravimeter in the field

## GPS

GPS, Global Positioning System is a satellite-based navigation system put into orbit by the U.S. Department of Defense. Composed of a network of 27 Earth-orbiting satellites in geostationary orbit 12,000 miles above earth, of the 27 satellites, 24 are in use with the other 3 being spares; just in case one fails. Circling the earth twice a day, they transmit signal information to earth, and the GPS receivers take this information and use triangulation to calculate the user's exact location. Essentially, the GPS receiver compares the time a signal was transmitted by a satellite with the time it was received. This time differential tells the GPS receiver how far away the satellite is. Compiling the distance measurements from a few more satellites, the receiver can then determine the user's position and present it on the unit's electronic map.

The fieldwork was executed with several different GPS setups. Throughout the roving fieldwork, both a mobile and static GPS were used; one that was carried throughout the area mounted on a tripod and one at base camp. Through these, the latitude, longitude and elevation of the gravity measurements were recorded; a GPS receiver must be locked on to the signal of at least three satellites to calculate a two-dimensional position (latitude and longitude) and track the movement. However, with four or more satellites in view, the receiver is able to determine the user's three dimensional position (latitude, longitude and altitude). At every location, the antenna would be reasonably leveled to increase precision, and then the height of the tripod antenna would be recorded using a height stick. While the measurements were not exact, that was alright, as it was only necessary to place the gravimeter within a meter or so of the GPS antenna. At each site, the GPS would be put into static mode so that it could take several minutes of measurements. These measurements, averaged over the time it took to make the measurement resulted in an accuracy that compensated for the small uncertainty relating to the displacement of the gravimeter. The two other GPS setups were used less frequently, and were related to seismographic research and to figuring out the location of the team at any given time. The first of these two setups resulted in the most precise measurements taken
throughout the course and were measured over the course of eight hours between two GPS tripod antennas no more than a half-mile apart. The GPS antennas were aligned with geodetic markers in the ground through an attached telescope with crosshairs. The height was then measured with the height stick and the antenna was aligned relative to true north. The second of these setups was simply a hand-held GPS receiver that relayed the team's position at all times and allowed for them to locate themselves during the fieldwork. This gave them the ability to record their latitude and longitude at each position and measurement which was an essential part of the later data analysis.

## Coordinate Systems

While spherical in nature, the Earth is constantly distorted due to the centrifugal force of daily rotation, resulting in a shape more akin to an oblate ellipsoid. The distance between the Earth's poles and its equator varies by about 20 kilometers at any given time due to this force. It is because of this that spherical coordinates, while seemingly obvious at first, would not be as helpful as one may initially believe, and as a result there have been several ellipsoidal coordinate systems devised. The three most common coordinate systems still in use today include NAD27, NAD83 and WGS84; the final two digits of each system represent the year in which they were first established. WGS84 was found to be particularly well fit for GPS, and was what the team used as their coordinate system this year. The only other relevant coordinate system used was NAD27, which is quite useful when using digital or flat two dimensional maps of the Earth.

## Planning of Measurement Point

Two types of gravity measurements were taken in the field. The first day was devoted to taking readings along the road at permanent geodetic markers. The succeeding days of field work were mainly devoted to trekking new terrain to gain a more detailed subsurface map than achieved the previous year. The distance between data points were aimed to be 200 meters. After the first day of hiking and a meeting with the geology field camp, it was decided to spend the next two days exploring the area to the south and southeast to locate the pattern of a fault and determine the presence of $a$ basin.


## III. Corrections

## Drift

The drift of the gravimeter is hardly perceptible over the time span of a year, so its influence on our gravity measurements is insignificant.
Thus there is no reason to calculate it for our degree of precision.
the drift correction were significant, however, it would be performed
after the tidal correction as follows.

$$
g_{\text {driftcorrected }}=g_{\text {dial }}+\left(\left(g_{\text {morning }}-g_{\text {evening }}\right) /\left(t_{\text {morning }}-t_{\text {evening }}\right)\right) \times\left(t-t_{\text {morning }}\right)
$$

## Conversion

The gravimeter was calibrated after manufacture. The table accompanying the gravimeter was used to determine the conversion factor between the dial reading, and its value in milligals.

## Day-to-Day Base Camp Correction

After drift and tidal corrections have been taken into account, the base camp measurements at the start and finish of each day should be the same. A day-to-day correction was therefore needed.
$g_{\text {daycorrected }}=g_{\text {driftcorrected }}+g_{1 \text { stmorning }}-g_{\text {nthmorning }}$


Figure 3: Raw gravity

## Tidal

The tidal correction is small, but it is much larger than the drift so therefore must be accounted for first. The tidal forces on earth due to the moon and the sun vary throughout the day and influence the gravimeter readings. The orbits of the sun and the moon cause the surface of the Earth to reshape slightly. This alteration in the position of the Earth's mass causes an increase in gravity at high tide and a decrease in gravity at low tide. Because the effect is most significant in large bodies of water, the effect of tides on gravity measurements is much more pronounced near the oceans. The Riverside Mountains are sufficiently far inland that the tides alter gravity measurements by less than .5 milligals. The forces for each time of measurement were determined using ETGTAB and subtracted out.


Figure 4: Tidal Correction
Extreme peaks are the effect of the moon, whose gravity is less than that of the sun but whose orbit is closer; middle peaks are the effect of the sun. The effect of the sun is about $50 \%$ that of the moon.


Figure 5: Tidal corrected gravity

## Latitude

As the Earth is an oblate spheroid with more mass centered about the equator than the poles, local gravity varies as a function of latitude. One would think that gravity would be greater near the equator since there is more mass directly below the point of measurement. But as gravity is an inverse square relation from the center of mass, the density of the earth is not enough to make up for the greater distance (squared) at the equator from the centroid as compared that of the poles. Hence local gravity increases as latitude increases, and is governed by the below equation:

$$
g_{r a w}=978032 \times\left(1+5.2789 \cdot 10^{\wedge}-3 \sin (\gamma)^{\wedge} 2-2.35 \cdot 10^{\wedge}-6 \sin (\gamma)^{\wedge} 4\right)
$$



Figure 6: Latitude corrected gravity


Figure 7: Local latitude correction


Figure 8: Global Latitude Correction

## The Bouguer and Free Air Corrections

The effect of the mountains and canyons on the gravity measurements must be subtracted out in order to determine the underlying surface features. This is accomplished in part by the application of the Free Air and Bouguer corrections.
Free-Air Correction:
The Free Air correction accounts for differences in elevation. The height of the gravimeter was calculated using GPS for each gravity measurement in the field. This was to eliminate elevation as a factor affecting the gravity recorded. Increase in elevation brings the gravimeter further from the earth's center of mass, and thus produces a decrease in recorded gravity. The same idea holds for decreasing elevation. Since gravity is inversely proportional to the square of the distance from the center of mass of an object, higher elevations have lower gravity.

$$
g_{\text {free }- \text { air }}=g_{\text {raw }}-0.307 \mathrm{mgal} / m \times h
$$

NOTE: elevation=height as measured by GPS with respect to base camp


Figure 9: Free-air corrected gravity
Bouguer Correction:
The Bouguer correction allows us to remove the effect of the mass contained in the mountains on our gravity measurements.
$g_{\text {bouger }}=g_{\text {free }}-$ air $+2 \pi \rho G h$

The derivation is as follows:
$d m=2 \pi r d r \sigma$
$\operatorname{Ghdm} /\left(r^{2}+h^{2}\right)^{3 / 2}$
$\int_{0}^{\infty} \sigma G h 2 \pi r d r /\left(r^{2}+h^{2}\right)^{3 / 2}$
$\Rightarrow 2 \pi \sigma G$
( $\sigma=\rho h$ )
$\therefore 2 \pi G \rho h$
Once the terrain effects are removed with the Free Air and Bouguer corrections, the resulting gravity measurements provide us with the relative rock densities. When these densities are
combined with geologic maps containing information on the type and density of rock at the site, we are finally able to determine the thickness of the underlying rock.


Figure 10: Bouguer corrected gravity

## Terrain Correction

The terrain correction accounts for two aspects of the topography on which gravity measurements are taken. When in a valley, the elevated mass to the side of the gravimeter has an upward attraction. This upward attraction decreases the observed gravity. When on the top of a hill or mountain, the sloping mass below the gravimeter has a slight downward attraction, also decreasing the observed gravity.

## IV. Analysis

The higher gravity band in the center of the graph corresponds to the higher density preCambrian rocks. The eastern part of the graph also has a higher density region that corresponds to the Paleozoic and Mesozoic to the east of the Eastern detachment fault. The Tertiary has lower gravity which shows less density of rock. Tertiary rocks are mostly sandstones, conglomerates and lake sediments, which are lower densities than the reworked and partially metamorphosed preCambrian rocks. If this area is in isostatic balance, the Tertiary would also be in a thicker layer underground. From geological mapping, the Eastern detachment fault looks very shallow, therefore probably not having a deep basin associated with the Tertiary.


Figure 11: Combined 2004 \& 2005 Data Points

## Calculating densities of various rock types

Two measurements at the edge of a wash were taken on the first day of hiking. The edge of the wash was composed of alluvium. Taking two measurements of distinct elevation at the edge of
the wash enabled the calculation of the density of the alluvium:

$$
\begin{aligned}
& g_{B}=k-2 \pi G(\Delta h) \rho / 2 \\
& g_{A}=k+2 \pi G(\Delta h) \rho / 2-\Delta h(0.307) \mathrm{mgal} / \mathrm{m} \\
& \Delta g=3233.55-3232.16=1.39 \mathrm{mgal}=g_{B}-g_{A} \\
& 1.39=2 \pi G(\Delta h) \rho-\Delta h(0.307) \\
& \Delta h=6.96 \mathrm{~m} \\
& 1.39=2 \pi G(6.96) \rho-6.96(0.307) \\
& G=6.673 \times 10^{-11} \times(100000000) \\
& \rho=2.56 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

## Gravimeter Warm-Up Test

Due to the new inability to transport the gravimeter batteries on airplanes, the gravimeter had to be warmed up starting in the field. Instead of the ideal warm up time of a week, the gravimeter had only 12 hours to reach operational temperature of $47.6^{\circ} \mathrm{C}$. The time allotted for battery re-charging was also only 12 hours. This created problems on the last day in the field when the battery voltage dropped below the ideal voltage of 12 V . Although the day was completed with the gravimeter maintaining its ideal temperature, a test was done back at MIT to observe the temperature dependence of the dial reading on the gravimeter.


Figure 12: Gravimeter Test

## MATLAB Codes

```
%Data Sets for pure_data.m-Columns
% 1 point name
% 2 year
% 3 day of year
% 4 hour California time
% 5 minute
% 6 minutes past Jan 8, 2005 00:08:00 UT
% 7 gravity dial reading
% 8 height correction (cm)
% 9 latitude degrees North
% 10 longitude degrees East
% 11 absolute height elliptical (m)
%%%%%%%%%%%%%%
load pure data.m;
load crude_data.m;
name=pure_data(:,1);
minutes=pure_data(:,6);
dial=pure_data(:,7);
hcorr=[crude_data(:,8);pure_data(:,8)];
lat=[crude_data(:,9);pure_data(:,9)];
long=[crude_data(:,10);pure_data(:,10)];
height=[crude_data(:,11);pure_data(:,11)];
cname=crude_data(:,1);
cminutes=crude_data(:,6);
cdial=crude_data(:,7);
%Gravity Conversion
%formula derived elsewhere
%%%%%%%%%%%%%%%%%%%%%%%%
g_dial=dial.*1.0576-6.6959;
cg_dial=cdial.*1.0576-6.6959;
ga_dial=[cg_dial;g_dial];
%Tidal Correction
%%%%%%%%%%%%%%%%%%
load tides.m
Atides=[(tides(:, 3)-8) .*1440+60.*(-8+tides(:,4))+tides(:,5)
tides(:,7)./1000];
plot(Atides(:,1),Atides(:,2))
R=floor((minutes)./5+.5)+1;
g_tide=g_dial-Atides(R,2);
load ctides.m
Btides=[(ctides(:,3)-11).*1440+60.*(-8+ctides(:,4))+ctides(:,5)
ctides(:,7)./1000];
plot(Btides(:,1),Btides(:,2))
S=floor((cminutes)./5+.5)+1;
cg_tide=cg_dial-Btides(S,2);
anäme=[cname; name];
ga_tide=[cg_tide;g_tide];
%Drift Correction
%%%%%%%%%%%%%%%%%%%%
```

```
%extract Base Camp Values from Tidal correction
%fit linear function
%correct ga_tide according to linear function
%Latitude Correction
%%%%%%%%%%%%%%%%%%%%%%%
lat_corr=978032*(1 + 5.2789e-3*(sin(lat*pi/180)).^2 - 2.35e-
6*(\overline{sin(lat*pi/180)).^4)-978032*(1 + 5.2789e-3*(sin(max(lat)*pi/180)).^2}
- 2.35e-6*(sin(max(lat)*pi/180)).^4);
g_lat=[aname ga_tide-lat_corr];
%Free Air Correction
%%%%%%%%%%%%%%%%%%%%%%%%%
aheight=height-hcorr./100;
g_freeair=[g_lat(:,2)+.307.*(height-min(height))]
%Bouguer Correction
%%%%%%%%%%%%%%%%%%%%%%
b_corr=2*pi*2.57*6.673e-6.*height;
g_boug=[g_freeair(:,2)-b_corr];
%Terrain Correction
%%%%%%%%%%%%%%%%%%%%
%get function
%GRAPHING
%%%%%%%%%%%
[x,y]=meshgrid(min(long):.0001:max(long), min(lat):.0001:max(lat));
z=griddata(long,lat,g_ABC(:, 3),x,y,'cubic');
shading interp
pcolor(x,y,z);
```


## Complete Gravity Data [2004/2005]



| 406 | 2005 | ${ }^{11}$ | 10 | ${ }^{41}$ | 5441 | 3058.90 | 148 | 34.022986470 | 245.443442485 | 265.2391 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 407 | 2005 | ${ }^{11}$ | ${ }^{11}$ | 1 | 5461 | 3059.93 | 152 | 34.021737686 | 245.442519597 | 244.9981 |
| 408 | 2005 | ${ }^{11}$ | ${ }^{11}$ | 16 | 5476 | 3065.20 | 167 | 34.020290628 | 245.441019863 | 231.3924 |
| 409 | 2005 | ${ }^{11}$ | ${ }^{11}$ | 26 | 5486 | 3060.90 | 150 | 34.019361741 | 245.439948701 | 250.2138 |
| ${ }_{4} 10$ | 2005 | ${ }^{11}$ | ${ }^{11}$ | ${ }^{38}$ | 5498 | 3061.25 | 137 | 34.020463535 | 245.438558455 | 252.5530 |
| ${ }^{411}$ | 2005 | ${ }^{11}$ | ${ }^{11}$ | 49 | 5509 | 3059.36 | 143 | 34.021648969 | 245.436371885 | 265.4465 |
| ${ }^{412}$ | 2005 | 11 | 12 | 7 | 5527 | 3060.68 | 153 | 34.019033452 | 245.436216157 | 254.6845 |
| ${ }^{413}$ | 2005 | ${ }^{11}$ | 12 | 15 | 5535 | 3060.94 | 160 | 34.017927541 | 245.435291823 | 252.8601 |
| ${ }^{414}$ | 2005 | 11 | 12 | 26 | 5546 | 3061.87 | 138 | 34.017387335 | 245.436835179 | 246.2310 |
| ${ }^{415}$ | 2005 | ${ }^{11}$ | 12 | ${ }^{36}$ | 5556 | 3063.70 | ${ }^{141}$ | 34.016406282 | 245.438927875 | 234.9377 |
| ${ }^{416}$ | 2005 | 11 | 13 | 8 | 5588 | 3064.04 | 157 | 34.015304977 | 245.441004469 | 231.8523 |
| 417 | 2005 | ${ }^{11}$ | ${ }^{13}$ | ${ }^{17}$ | 5597 | 3065.70 | 139 | 34.013602235 | 245.442073286 | 223.4664 |
| 418 | 2005 | ${ }^{11}$ | ${ }^{13}$ | ${ }^{30}$ | 5610 | 3068.52 | 152 | 34.011365115 | 245.442457585 | 209.0050 |
| ${ }^{419}$ | 2005 | ${ }^{11}$ | ${ }^{13}$ | ${ }^{41}$ | 5621 | 3069.24 | 136 | 34.009068122 | 245.444164815 | 204.3236 |
| ${ }^{420}$ | 2005 | ${ }^{11}$ | 13 | 54 | 5634 | 3066.94 | 149 | 34.010794078 | 245.444590043 | 216.9023 |
| 421 | 2005 | ${ }^{11}$ | ${ }^{14}$ | 5 | 5645 | 3065.89 | 143 | 34.013525013 | 245.445409747 | 223.3297 |
| ${ }^{422}$ | 2005 | ${ }^{11}$ | ${ }^{14}$ | ${ }^{18}$ | 5658 | 3065.61 | 157 | 34.015973087 | 245.444826352 | 224.6310 |
| ${ }^{423}$ | 2005 | ${ }^{11}$ | ${ }^{14}$ | ${ }^{48}$ | 5688 | 3061.76 | 142 | 34.017354029 | 245.445855360 | 244.5750 |
| ${ }^{424}$ | 2005 | ${ }^{11}$ | 15 | 0 | 5700 | 3062.29 | 152 | 34.018175013 | 245.446916812 | 243.3730 |
| 425 | 2005 | ${ }^{11}$ | 15 | 16 | 5716 | 3059.41 | 133 | 34.019492308 | 245.448476222 | 259.3967 |
| 426 | 2005 | ${ }^{11}$ | 15 | ${ }^{31}$ | 5731 | 3058.08 | 145 | 34.021334771 | 245.449590297 | 268.4018 |
| ${ }^{427}$ | 2005 | 11 | 15 | ${ }^{45}$ | 5745 | 3057.87 | 142 | 34.023773275 | 245.451142459 | 277.4771 |
| ${ }^{428}$ | 2005 | ${ }^{11}$ | 16 | ${ }^{4}$ | 5764 | 3059.39 | 151 | 34.028035824 | 245.454354379 | 276.6907 |
| ${ }^{499}$ | 2005 | ${ }^{11}$ | 16 | ${ }^{43}$ | 5803 | 3064.59 | 107 | 34.062513490 | 245.455947957 | 234.5261 |
| 500 | 2005 | 12 | 10 | 7 | 6847 | 3065.80 | 151 | 34.013717014 | 245.459849542 | 239.1750 |
| 501 | 2005 | 12 | 10 | ${ }^{34}$ | 6874 | 3061.88 | 167 | 34.012644704 | 245.463065761 | 261.6974 |
| 502 | 2005 | 12 | 10 | ${ }^{44}$ | 6884 | 3063.71 | 163 | 34.010600441 | 245.460681410 | 248.5407 |
| ${ }^{503}$ | 2005 | 12 | 10 | ${ }^{53}$ | 6893 | 3066.18 | 154 | 34.008714769 | 245.459700774 | 232.4108 |
| 504 | 2005 | 12 | 11 | 6 | 6906 | 3064.49 | 165 | 34.008352420 | 245.461886690 | 243.8718 |
| 505 | 2005 | 12 | ${ }^{11}$ | ${ }^{17}$ | 6917 | 3063.17 | 156 | 34.008069931 | 245.463819567 | 251.7638 |
| 506 | 2005 | 12 | ${ }^{11}$ | ${ }^{30}$ | 6930 | 3062.99 | 161 | 34.007956519 | 245.465035981 | 253.6762 |
| 507 | 2005 | ${ }^{12}$ | ${ }^{11}$ | ${ }^{49}$ | 6949 | 3060.37 | 165 | 34.007557678 | 245.466848294 | 267.0543 |
| 508 | 2005 | 12 | 12 | 5 | 6965 | 3064.22 | 151 | 34.006068625 | 245.464827438 | 243.3768 |
| 509 | 2005 | 12 | 12 | 17 | 6977 | 3066.65 | 165 | 34.005354790 | 245.462393400 | 229.4760 |
| 510 | 2005 | 12 | 12 | 29 | 6989 | 3067.72 | 151 | 34.004618793 | 245.460098812 | 220.7347 |
| 511 | 2005 | 12 | 12 | 40 | 7000 | 3068.90 | 147 | 34.002930916 | 245.456463530 | 210.4649 |
| 512 | 2005 | 12 | ${ }^{13}$ | 16 | 7036 | 3069.88 | 155 | 34.000880842 | 245.453711046 | 200.9776 |
| 513 | 2005 | 12 | 13 | 28 | ${ }^{2048}$ | 3070.84 | 147 | 33.999315299 | 245.451391902 | 192.3673 |
| 514 | 2005 | 12 | ${ }^{13}$ | 42 | 7062 | 3071.70 | 156 | 33.999839397 | 245.446506697 | 187.9929 |
| 515 | 2005 | 12 | ${ }^{13}$ | 58 | 7078 | 3070.64 | 158 | 34.004301470 | 245.445617705 | 195.1619 |
| 516 | 2005 | 12 | 14 | 12 | 7092 | 3069.39 | 158 | 34.009053130 | 245.444168900 | 204.4690 |
| 517 | 2005 | 12 | ${ }^{14}$ | ${ }^{34}$ | 7114 | 3064.28 | 159 | 34.009495365 | 245.446739245 | 231.5974 |
| 518 | 2005 | 12 | ${ }^{14}$ | ${ }^{44}$ | 7124 | 3067.25 | 166 | 34.011413065 | 245.448038558 | 217.0085 |
| 519 | 2005 | 12 | ${ }^{14}$ | 55 | 7135 | 3065.44 | 147 | 34.014362668 | 245.449738240 | 227.4041 |
| 520 | 2005 | 12 | 15 | 9 | 7149 | 3064.61 | 153 | 34.015397087 | 245.451253212 | 234.7622 |
| 521 | 2005 | 12 | 15 | ${ }^{21}$ | 7161 | 3064.31 | 160 | 34.017693978 | 245.451534929 | 239.6058 |
| 522 | 2005 | 12 | 15 | ${ }^{34}$ | 7174 | 3061.83 | 153 | 34.020307302 | 245.450988209 | 251.5167 |
| 523 | 2005 | 12 | 15 | 44 | 7184 | 3062.45 | 164 | 34.021589261 | 245.451958357 | 252.5995 |
| 524 | 2005 | 12 | 15 | 55 | 7195 | 3062.14 | 148 | 34.023258296 | 245.453468592 | 259.5484 |
| 599 | 2005 | 12 | 16 | 45 | ${ }^{245}$ | 3064.74 | 107 | 34.062513490 | 245.455947957 | 234.5261 |
| 1 | 2004 | ${ }^{11}$ | 10 | 56 | ${ }^{1136}$ | 3052.72 | 144 | 34.037488333 | 114.543196667 | 315.8989 |
| 2 | 2004 | ${ }^{11}$ | ${ }^{11}$ | 7 | 1147 | 3054.86 | 147 | 34.036860000 | 114.544300000 | 304.7219 |
| ${ }^{3}$ | 2004 | ${ }^{11}$ | ${ }^{11}$ | ${ }^{17}$ | 1157 | 3054.99 | 148 | 34.036273333 | 114.545011667 | 304.1429 |
| 4 | 2004 | ${ }^{11}$ | ${ }^{11}$ | 28 | 1168 | 3056.03 | 152 | 34.036090000 | 114.54611667 | 297.3579 |
| 5 | 2004 | ${ }^{11}$ | ${ }^{11}$ | ${ }^{38}$ | 1178 | 3056.73 | 153 | 34.035425000 | 114.546941667 | 294.2749 |
| 6 | 2004 | ${ }^{11}$ | ${ }^{11}$ | 49 | 1189 | 3057.13 | 149 | 34.034541667 | 114.547118333 | 291.4649 |
| 7 | 2004 | ${ }^{11}$ | ${ }^{11}$ | 55 | 1195 | 3057.08 | 147 | 34.033703333 | 114.546645000 | 291.9019 |
| 8 | 2004 | ${ }^{11}$ | 12 | 1 | 1201 | 3057.76 | 152 | 34.032876667 | 114.546508333 | 287.9879 |
| 9 | 2004 | ${ }^{11}$ | 12 | 15 | 1215 | 3058.25 | 153 | 34.032426667 | 114.547460000 | 284.6499 |
| 10 | 2004 | ${ }^{11}$ | 12 | 22 | 1222 | 3058.24 | 154 | 34.032331667 | 114.548530000 | 283.1669 |
| ${ }^{11}$ | 2004 | ${ }^{11}$ | 12 | 30 | 1230 | 3058.67 | 154 | 34.032045000 | 114.549611667 | 280.7309 |
| 12 | 2004 | ${ }^{11}$ | 12 | ${ }^{43}$ | 1243 | 3059.15 | 156 | 34.031535000 | 114.550496667 | 277.0839 |
| ${ }^{13}$ | 2004 | ${ }^{11}$ | 12 | 52 | 1252 | 3059.52 | 148 | 34.031325000 | 114.551636667 | 273.5529 |
| ${ }^{14}$ | 2004 | ${ }^{11}$ | 12 | 59 | 1259 | 3059.77 | 150 | 34.030616667 | 114.552418333 | 270.9359 |
| 15 | 2004 | ${ }^{11}$ | ${ }^{13}$ | 7 | 1267 | 3060.26 | 151 | 34.029765000 | 114.552928333 | 267.8089 |
| 16 | 2004 | ${ }^{11}$ | ${ }^{13}$ | 24 | 1284 | 3061.27 |  | 34.029135000 | 114.553055000 | 260.3779 |



| 242 | 2004 | 14 | 14 | 56 | 5696 | 3057.8 | 148 | 34.030330000 | 114.543373333 | 288.9679 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 243 | 2004 | 14 | 15 | 4 | 5704 | 3058 | 138 | 34.030521667 | 114.544385000 | 286.1889 |
| 244 | 2004 | 14 | 15 | 21 | 5721 | 3052.83 | 143 | 34.037486667 | 114.543206667 | 315.7599 |

