12.221 Field Geophysics 2011 Lecture 1

Introduction to gravity measurement and interpretation

Reading: Lowrie, Fundamentals of Geophysics, pp. 73-95
see also Chapter 2 of 12.501 lecture notes (Rob van der Hilst)
http:/Iocw.mit.edu/NR/ddonlyres/Earth-Atmospheric-and-Planetary-Sciences/11-201FFall-2004/E7AODF78-ADC6-49A7-8812-1D82449393988//ch2.pdi (may be heavy going in places - skim global part, focus on gravity anomalies)

Gravity - simple physics

- Force: $\mathrm{f}=\mathrm{GmM} / \mathrm{r}^{2}$
$\mathrm{G}=6.6710^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
Vector directed along r
- Acceleration of test
mass: $\mathrm{g}=\mathrm{GM} / \mathrm{r}^{2}$

$$
g=-\nabla \cdot V
$$

- Potential energy: $\mathrm{U}=-\mathrm{GmM} / \mathrm{r}$
- Gravitational potential

$$
\mathrm{V}=\mathrm{GM} / \mathrm{r}
$$

Gravity - distributed density $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})$

- potential $\nabla^{2} V=4 \pi G \rho$
- acceleration $g=-\nabla V$

$$
V=4 \pi G \iiint_{\text {universe }} \frac{\rho(x, y, z)}{\left.\sqrt{\left(x^{2}\right.}+y^{2}+z^{2}\right)} d x d y d z
$$

Measuring g places constraints on $\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})$ (especially nearby)
Measuring g does not constrain ρ directly (sphere \Leftrightarrow point mass)
$\rho(\mathrm{x}, \mathrm{y}, \mathrm{z})$ can be complicated
\Leftrightarrow simple physics, complicated interpretation

Interpretation (and effort justified) depend on accuracy of measurements - consider the trade-off judiciously!

GRACE: Satellite-satellite range changes

GRACE "static" gravity variations

http://www.csr.utexas.edu/grace/gallery/animations/ggm01/index.html

Fig. 2. (A) GRACE long-term mass rates over Greenland and surrounding regions during the period April 2002 to November 2005, determined from mass change time series on a 1\{degrees\} grid

J. L. Chen et al., Science 313, 1958-1960 (2006)

GRACE annual gravity variations

http://geoid.colorado.edu/grace/grace.php

Measuring variations in g

- $\mathrm{f}=\mathrm{mg}=\mathrm{ku}$
- $\mathrm{g} \sim 9.8 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{g} \sim 980 \mathrm{~cm} / \mathrm{s}^{2}$
(980 gals Galileo)
- $\Delta \mathrm{g} \sim 1 \mathrm{mgal}\left(10^{-6}\right)$ interesting

- Need good instrument, good theory!

Spinning Earth -> centrifugal force, equatorial bulge centrifugal force $=>$ less g at equator, no effect at poles equatorial bulge (\sim elliptical)
more mass near equator $=>\mathrm{g}$ increases
r larger at equator $=>g$ decreases
Dependence of g on latitude (ϕ)
$\mathrm{g}(\phi)=978032\left(1+0.0052789 \sin ^{2} \phi-0.00000235 \sin ^{4} \phi\right) \mathrm{mgal}$ $\mathrm{dg} / \mathrm{d} \phi=0.01 \mathrm{~g} \sin \phi \cos \phi=75 \mathrm{mgal} / \mathrm{deg}$ at $\phi=30^{\circ}$

What causes these variations?
$\mathrm{g}=\mathrm{GM} / \mathrm{r}^{2}$ Elevation change $\mathrm{r}->\mathrm{r}+\mathrm{h} \Rightarrow \mathrm{g}$ decreases ("free air" effect) Free air effect: $\mathrm{g}(\mathrm{r}+\mathrm{h})=\mathrm{g}(\mathrm{r})+(\mathrm{dg} / \mathrm{dr}) \mathrm{h}$ $\mathrm{dg} / \mathrm{dr}=-2 \mathrm{~g} / \mathrm{r}=-0.307 \mathrm{mgal} / \mathrm{m}$

Gravity anomalies

In general:

$$
\Delta \mathrm{g}=\mathrm{g}_{\text {observed }}-\mathrm{g}_{\text {theory }}
$$

Free Air theory:

$$
\mathrm{g}_{\text {Free Air }}=\mathrm{g}(\phi, \mathrm{~h})=\mathrm{g}(\phi)-0.307 \mathrm{~h}
$$

Free air anomaly:

$$
\Delta g_{\text {faa }}=g_{\text {observed }}-g_{\text {Free Air }}
$$

Bouguer gravity anomaly:
Mountains are not hollow!

Approximate as a sheet mass:
$\mathrm{g}_{\text {Bougure }}=\mathrm{g}_{\text {Free Air }}+2 \pi \rho \mathrm{Gh}$;

$$
\text { for } \rho=2.67,2 \pi \rho G=0.112 \mathrm{mgal} / \mathrm{m}
$$

Isostacy: Mass in each column assumed to be equal

CA-NV border, topography and gravity (milligal)

Step in basement topography
$\mathrm{g}=2 \mathrm{G}(\Delta \rho) \mathrm{t}\left[\pi / 2+\tan ^{-1}(\mathrm{x} / \mathrm{d})\right]$

How big a step makes 1 mgal?

Terrain has an effect

Fig. 3-2. Reduction of gravity values to the geoid. Inset shows typical zone chart used to obtain topographic corrections superimposed over contour map of area. Station is at elevation of $1,050 \mathrm{ft}$. Average elevation of zone $12-\mathrm{D}$, for example, is $1,020 \mathrm{ft}$. Hence topographic correction for this zone is 30 times the constant for the zone.

Computation of terrain \& root using DEM - a new solution to a classic problem
 New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra

Bijendra Singh* and D. Guptasarma*

See http://www.geo-online.org/manuscript/singh99063.pdf for Matlab scripts for carrying out calculations

A parallel algorithm for three-dimensional gravity modelling and inversion

Diplomarbeit vorgelegt von
Dror-John Rやocher Bochum, April 2002

Right rectangular prism

$$
g=-f \rho \int_{\xi_{1}}^{\xi_{2}} \int_{\eta_{1}} \int_{\zeta_{1}}^{\zeta_{2}} \frac{z-\zeta}{r^{3}} d \xi d \eta d \zeta
$$

Formula 2.8 has been derived by many rt

overview). According to them Sorokin (1951) derived the following form:

$$
\begin{equation*}
g=-f \rho \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{i j k}\left[x_{i} \ln \left(y_{j}+r_{i j k}\right)+y_{j} \ln \left(x_{i}+r_{i j k}\right)+z_{k} \arctan \frac{z_{k} r_{i j k}}{x_{i} y_{j}}\right] \tag{2.9}
\end{equation*}
$$

where $x_{i}=x-\xi_{i}, y_{i}=y-\eta_{i}$, and $z_{k}=z-\zeta_{k}$, and

$$
r_{i j k}=\sqrt{x_{i}^{2}+y_{j}^{2}+z_{k}^{2}}, \mu_{i j k}=(-1)^{i}(-1)^{j}(-1)^{z}
$$

Nagy (1966) carried out the integration in formula 2.8 in a different way then Sorokin using arcsine functions instead of arctangent functions:

$$
\begin{aligned}
& g=-f \rho \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{i j k} \\
& \cdots\left[x_{i} \ln \left(y_{j}+r_{i j k}\right)+y_{i} \ln \left(x_{i}+r_{i j k}\right)-z_{k} \arcsin \frac{y_{j}^{2}+z_{k}^{2}+y_{j} r_{i j k}}{\left(y_{j}+r_{i j k}\right) \sqrt{y_{j}^{2}+z_{k}^{2}}}\right]
\end{aligned}
$$

$$
(2.10)
$$

Example "real-world" problems:

- Are the mountains isostatically compensated?
- How deep is basin fill?
- How steep is the basin boundary?
- How thick is the Tertiary detachment sheet?
-?

Regional raw data (2004 FC report)

Bouguer anomaly, '04, ‘05, ‘08

Bouguer anomaly, ‘04, ‘05, ‘08

Interpretation of Seismic Line

Figure 30: The final model based on seismological analysis. Model is schematic and not to scale.

This year's plan:

- Figure out what measurements would best constrain geologic model
- Sources of uncertainty
- Logistical constraints
- Carry out field campaign
- Implement 3-D model

Before leaving:

1) Gravimeter practice (all)
2) Gravimeter problem set (all)
3) Calculate expected dial reading at field camp (all)
4) Get tidal corrections (1 person)
5) Complete integration 2004, 2005, and 2008 data (1 person)
6) $\operatorname{DEM}(\mathrm{s}$?) for Vidal quadrangle and vicinity (1 person)
