12.010 Computational Methods of Scientific Programming

Lecturers
Thomas A Herring, Room 54-820A, tah@mit.edu
Chris Hill, Room 54-1511, cnh@gulf.mit.edu

Web page http://www-gpsg.mit.edu/~tah/12.010
Mathematica

• Look in more detail at some of the programming features in Mathematica
• There are many of these features and in all Mathematica expressions there are Function names and “short-hand” symbols
• The + usage is actually a function Plus, * is Times
• Use of FullForm shows full form of expressions
Subroutines (declaration)

name[v1_Type, ...] := Module[{local variables}, body]

Type is optional for the arguments (passed by value)

• Invoked with
 name[same list of variable types]

• Example:
 sub1[i_] := Module[{s}, s = i + i^2 + i^3; Sqrt[s]]

In main program or another subroutine/function:
 sum = sub1[i]

Note: Names of arguments do not need to match those
used to declare the function, just the types (if declared)
needs to match, otherwise the function is not defined. *
When value_Real form Is used, the same function name can do different things depending on argument types.
Functions 02

- Functions can return any of the variable types
- The function name is a symbol
- The function must always appear with the same name, but other names can be defined in desired.
Intrinsic functions

• These functions are embedded in the language and often go by "generic names." Mathematica has MANY of these (check out the Help under "Built in Functions")!

• Examples include Sin, Cos, Tan, ArcTan. Precisely which functions are available are machine independent.

• If a function is not available: function called is returned unchanged (i.e. function[x])
Flow control

- If statement form:
 If[condition, t, f] gives t if condition evaluates to True, and f if it evaluates to False.
 If[condition, t, f, u] gives u if condition evaluates to neither True nor False.
- The standard conditions tests are ==, !=, <, <=, >, >=
- Multiple test are && (and) || (or)
- It also possible combine:
 if[7 > 6 > 5, ..] rather than if[7 > 6 && 6 > 5, ..]
- Which allows a range of actions:
 Which[test1, value1, test2, value2, test2, value2]
- Switch allows action based on result of expression:
 Switch[expr, form1, value1, form2, value2]
- Examples in 12.010.Lec13.nb
Loop structures

- Do structure: Most general structure
 \[\text{Do}[\text{expr}, \{i, \text{imin}, \text{imax}, \text{di}\}, \{j, \text{jmin}, \text{jmax}, \text{dj}\}, \ldots]\]
 This would loop through values of \(i\) from \(\text{imin}\) to \(\text{imax}\) in increments of \(\text{di}\), for each value of \(j\) which would loop from \(\text{jmin}\) to \(\text{jmax}\) in increment of \(\text{dj}\).

- If the increment is not given 1 is assumed, if \(\text{imax}\) is not given, then loops from 1 to \(\text{imin}\). If only 1 argument is given, \(\text{expr}\) is evaluated that many times.

- While[\text{test, body}] executes code in body (statements are separated by ;) while ever test is true.
 Return[\text{val}] can be used to return a value from the \text{body} code;
 Break[]can be used to exit body

- For[\text{start, test, incr, body}] executes start, then repeatedly evaluates body and incr until test fails to give True

- Mathematica does have a Goto[\text{tag}] statement using Label[\text{tag}]
Functions

- Function[body] or body& is a pure function. The formal parameters are # (or #1, #2, etc).
- Function[x, body] is a pure function with a single formal parameter x. Body can have multiple statements separated by ;
- Function[{x1,x2,...}, body] is a pure function with a list of formal parameters.
- If the body is more than one statement, normally there would be a Return[..] call to set the quantity returned form the call.
- Map[f, expr] or f /@ expr applies f to each element on the first level in expr.
- Apply[f, expr] or f @@ expr replaces the head of expr by f. This is basically a way of changing what something is in Mathematica e.g., if expr is a list {...}, it can be changed to Times (multiply)

Apply[Circle, {{{0, 0}, r}, {{1, 0}, s}, {{0, 1}, t}}, {1}] yields {Circle[{0, 0}, r], Circle[{1, 0}, s], Circle[{0, 1}, t]}
Pattern Matching

- `_` or `Blank[]` is a pattern object that can stand for any Mathematica expression.
- `_.h` or `Blank[h]` can stand for any expression with head `h`. We used this in an earlier lecture to make `x_Integer` for an integer argument.
- `___h` or `BlankSequence[h]` can stand for any sequence of one or more expressions, all of which have head `h`.
- `g[x_, y___] := x + y; g[a, b, c]` yields `a+b+c`
- Replace and Rules: `->` (arrow on Palette) applies a rule for to convert `lhs` to `rhs`, `/.` is the replace all e.g. `1 + x /. x -> a` yields `1+a` (same as `ReplaceAll[1 + x, x -> a]`)
- There are many more forms of rules and replacements that are given in the Pattern Matching and Rule applications in the Programming section of the Mathematica help.

10/21/2010 12.010 Lec 13 10

Next slide 10/24
Format types

• Mathematica offers many different types of ways to display results and convert to different formats
• These are given in the Format Types under Input Output sections of the Built in Functions
• Some examples are TableForm, MatrixForm, TreeForm
• N[expr] gives the numerical value of expr.
• N[expr, n] attempts to give a result with n-digit precision.
Files and directories

- Directory[] - give your current working directory
- SetDirectory["dir"] - set your current working directory
- FileNames[] - list the files in your current working directory
- FileNames["form"] - list the files whose names match a certain form
- <<name - read in a file with the specified name (Get)
- <<context - read in a file corresponding to the specified context
- CopyFile["file1","file2"] - copies file1 to file2
- DeleteFile["file1"] - deletes the file.
- Input["prompt"] is used to read information from the keyboard
Graphics

- Mathematica supports a variety of graphics plots through is basic plot command.
- Simple plots can be modified with options given in the plot command.
- Mathematica 6.0 and above has a new Manipulate command
 Syntax of command: The variable a here is the one that can be manipulated between values of 0 and 2.
 Manipulate[Plot[Sin[x (1 + a x)], {x, 0, 6}], {a, 0, 2}]
Final Comments

- Users of Mathematica need to understand the basics of the syntax of the program. The online help however provides the details of the capabilities of the program.
- Built-in Functions is grouped by
 - Numerical Computation
 - Algebraic Computation
 - Mathematical Functions
 - Lists and Matrices
 - Graphics and Sounds
- Program development should be knowing what you want to do and then finding the Functions that, in combination, will do the task.
- With Notebooks, you can keep track and comment on the way the program works.
- Homework #4 will be due Thursday Nov 18, 2010.